Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
IEEE Sens J ; 23(2): 898-905, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36913222

RESUMEN

Ambient intelligence plays a crucial role in healthcare situations. It provides a certain way to deal with emergencies to provide the essential resources such as nearest hospitals and emergency stations promptly to avoid deaths. Since the outbreak of Covid-19, several artificial intelligence techniques have been used. However, situation awareness is a key aspect to handling any pandemic situation. The situation-awareness approach gives patients a routine life where they are continuously monitored by caregivers through wearable sensors and alert the practitioners in case of any patient emergency. Therefore, in this paper, we propose a situation-aware mechanism to detect Covid-19 systems early and alert the user to be self-aware regarding the situation to take precautions if the situation seems unlikely to be normal. We provide Belief-Desire-Intention intelligent reasoning mechanism for the system to analyze the situation after acquiring the data from the wearable sensors and alert the user according to their environment. We use the case study for further demonstration of our proposed framework. We model the proposed system by temporal logic and map the system illustration into a simulation tool called NetLogo to determine the results of the proposed system.

2.
Comput Commun ; 199: 87-97, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36531214

RESUMEN

COVID-19 data analysis and prediction from patient data repository collected from hospitals and health organizations. Users' credentials and personal information are at risk; it could be an unrecoverable issue worldwide. A Homomorphic identification of possible breaches could be more appropriate for minimizing the risk factors in preventing personal data. Individual user privacy preservation is a must-needed research focus in various fields. Health data generated and collected information from multiple scenarios increasing the complexity involved in maintaining secret patient information. A homomorphic-based systematic approach with a deep learning process could reduce depicts and illegal functionality of unknown organizations trying to have relation to the environment and physical and social relations. This article addresses the homomorphic standard system functionality, which refers to all the functional aspects of deep learning system requirements in COVID-19 health management. Moreover, this paper spotlights the metric privacy incorporation for improving the Deep Learning System (DPLS) approaches for solving the healthcare system's complex issues. It is absorbed from the result analysis Homomorphic-based privacy observation metric gradually improves the effectiveness of the deep learning process in COVID-19-health care management.

3.
Sensors (Basel) ; 22(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35746176

RESUMEN

The Internet of Things (IoT) revitalizes the world with tremendous capabilities and potential to be utilized in vehicular networks. The Smart Transport Infrastructure (STI) era depends mainly on the IoT. Advanced machine learning (ML) techniques are being used to strengthen the STI smartness further. However, some decisions are very challenging due to the vast number of STI components and big data generated from STIs. Computation cost, communication overheads, and privacy issues are significant concerns for wide-scale ML adoption within STI. These issues can be addressed using Federated Learning (FL) and blockchain. FL can be used to address the issues of privacy preservation and handling big data generated in STI management and control. Blockchain is a distributed ledger that can store data while providing trust and integrity assurance. Blockchain can be a solution to data integrity and can add more security to the STI. This survey initially explores the vehicular network and STI in detail and sheds light on the blockchain and FL with real-world implementations. Then, FL and blockchain applications in the Vehicular Ad Hoc Network (VANET) environment from security and privacy perspectives are discussed in detail. In the end, the paper focuses on the current research challenges and future research directions related to integrating FL and blockchain for vehicular networks.


Asunto(s)
Cadena de Bloques , Internet de las Cosas , Seguridad Computacional , Privacidad , Tecnología
4.
Sensors (Basel) ; 22(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35336261

RESUMEN

The 21st century has seen rapid changes in technology, industry, and social patterns. Most industries have moved towards automation, and human intervention has decreased, which has led to a revolution in industries, named the fourth industrial revolution (Industry 4.0). Industry 4.0 or the fourth industrial revolution (IR 4.0) relies heavily on the Internet of Things (IoT) and wireless sensor networks (WSN). IoT and WSN are used in various control systems, including environmental monitoring, home automation, and chemical/biological attack detection. IoT devices and applications are used to process extracted data from WSN devices and transmit them to remote locations. This systematic literature review offers a wide range of information on Industry 4.0, finds research gaps, and recommends future directions. Seven research questions are addressed in this article: (i) What are the contributions of WSN in IR 4.0? (ii) What are the contributions of IoT in IR 4.0? (iii) What are the types of WSN coverage areas for IR 4.0? (iv) What are the major types of network intruders in WSN and IoT systems? (v) What are the prominent network security attacks in WSN and IoT? (vi) What are the significant issues in IoT and WSN frameworks? and (vii) What are the limitations and research gaps in the existing work? This study mainly focuses on research solutions and new techniques to automate Industry 4.0. In this research, we analyzed over 130 articles from 2014 until 2021. This paper covers several aspects of Industry 4.0, from the designing phase to security needs, from the deployment stage to the classification of the network, the difficulties, challenges, and future directions.


Asunto(s)
Internet de las Cosas , Humanos , Tecnología Inalámbrica
5.
Multimed Syst ; 28(4): 1223-1237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33814730

RESUMEN

Coronavirus is a fatal disease that affects mammals and birds. Usually, this virus spreads in humans through aerial precipitation of any fluid secreted from the infected entity's body part. This type of virus is fatal than other unpremeditated viruses. Meanwhile, another class of coronavirus was developed in December 2019, named Novel Coronavirus (2019-nCoV), first seen in Wuhan, China. From January 23, 2020, the number of affected individuals from this virus rapidly increased in Wuhan and other countries. This research proposes a system for classifying and analyzing the predictions obtained from symptoms of this virus. The proposed system aims to determine those attributes that help in the early detection of Coronavirus Disease (COVID-19) using the Adaptive Neuro-Fuzzy Inference System (ANFIS). This work computes the accuracy of different machine learning classifiers and selects the best classifier for COVID-19 detection based on comparative analysis. ANFIS is used to model and control ill-defined and uncertain systems to predict this globally spread disease's risk factor. COVID-19 dataset is classified using Support Vector Machine (SVM) because it achieved the highest accuracy of 100% among all classifiers. Furthermore, the ANFIS model is implemented on this classified dataset, which results in an 80% risk prediction for COVID-19.

6.
Pers Ubiquitous Comput ; : 1-17, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34312582

RESUMEN

Life-threatening novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), also known as COVID-19, has engulfed the world and caused health and economic challenges. To control the spread of COVID-19, a mechanism is required to enforce physical distancing between people. This paper proposes a Blockchain-based framework that preserves patients' anonymity while tracing their contacts with the help of Bluetooth-enabled smartphones. We use a smartphone application to interact with the proposed blockchain framework for contact tracing of the general public using Bluetooth and to store the obtained data over the cloud, which is accessible to health departments and government agencies to perform necessary and timely actions (e.g., like quarantine the infected people moving around). Thus, the proposed framework helps people perform their regular business and day-to-day activities with a controlled mechanism that keeps them safe from infected and exposed people. The smartphone application is capable enough to check their COVID status after analyzing the symptoms quickly and observes (based on given symptoms) either this person is infected or not. As a result, the proposed Adaptive Neuro-Fuzzy Interference System (ANFIS) system predicts the COVID status, and K-Nearest Neighbor (KNN) enhances the accuracy rate to 95.9% compared to state-of-the-art results.

7.
Sensors (Basel) ; 20(8)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295298

RESUMEN

Recognizing human physical activities from streaming smartphone sensor readings is essential for the successful realization of a smart environment. Physical activity recognition is one of the active research topics to provide users the adaptive services using smart devices. Existing physical activity recognition methods lack in providing fast and accurate recognition of activities. This paper proposes an approach to recognize physical activities using only2-axes of the smartphone accelerometer sensor. It also investigates the effectiveness and contribution of each axis of the accelerometer in the recognition of physical activities. To implement our approach, data of daily life activities are collected labeled using the accelerometer from 12 participants. Furthermore, three machine learning classifiers are implemented to train the model on the collected dataset and in predicting the activities. Our proposed approach provides more promising results compared to the existing techniques and presents a strong rationale behind the effectiveness and contribution of each axis of an accelerometer for activity recognition. To ensure the reliability of the model, we evaluate the proposed approach and observations on standard publicly available dataset WISDM also and provide a comparative analysis with state-of-the-art studies. The proposed approach achieved 93% weighted accuracy with Multilayer Perceptron (MLP) classifier, which is almost 13% higher than the existing methods.


Asunto(s)
Acelerometría/métodos , Actividad Motora , Acelerometría/instrumentación , Humanos , Modelos Logísticos , Aprendizaje Automático , Carrera , Sedestación , Teléfono Inteligente , Caminata
8.
Comput Intell Neurosci ; 2023: 7717712, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909966

RESUMEN

Medical image analysis places a significant focus on breast cancer, which poses a significant threat to women's health and contributes to many fatalities. An early and precise diagnosis of breast cancer through digital mammograms can significantly improve the accuracy of disease detection. Computer-aided diagnosis (CAD) systems must analyze the medical imagery and perform detection, segmentation, and classification processes to assist radiologists with accurately detecting breast lesions. However, early-stage mammography cancer detection is certainly difficult. The deep convolutional neural network has demonstrated exceptional results and is considered a highly effective tool in the field. This study proposes a computational framework for diagnosing breast cancer using a ResNet-50 convolutional neural network to classify mammogram images. To train and classify the INbreast dataset into benign or malignant categories, the framework utilizes transfer learning from the pretrained ResNet-50 CNN on ImageNet. The results revealed that the proposed framework achieved an outstanding classification accuracy of 93%, surpassing other models trained on the same dataset. This novel approach facilitates early diagnosis and classification of malignant and benign breast cancer, potentially saving lives and resources. These outcomes highlight that deep convolutional neural network algorithms can be trained to achieve highly accurate results in various mammograms, along with the capacity to enhance medical tools by reducing the error rate in screening mammograms.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Mamografía/métodos , Redes Neurales de la Computación , Diagnóstico por Computador
9.
Complex Intell Systems ; 9(1): 1027-1058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35668731

RESUMEN

Extensive research has been conducted on healthcare technology and service advancements during the last decade. The Internet of Medical Things (IoMT) has demonstrated the ability to connect various medical apparatus, sensors, and healthcare specialists to ensure the best medical treatment in a distant location. Patient safety has improved, healthcare prices have decreased dramatically, healthcare services have become more approachable, and the operational efficiency of the healthcare industry has increased. This research paper offers a recent review of current and future healthcare applications, security, market trends, and IoMT-based technology implementation. This research paper analyses the advancement of IoMT implementation in addressing various healthcare concerns from the perspectives of enabling technologies, healthcare applications, and services. The potential obstacles and issues of the IoMT system are also discussed. Finally, the survey includes a comprehensive overview of different disciplines of IoMT to empower future researchers who are eager to work on and make advances in the field to obtain a better understanding of the domain.

11.
Front Public Health ; 11: 1024195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969684

RESUMEN

Explainable artificial intelligence (XAI) is of paramount importance to various domains, including healthcare, fitness, skill assessment, and personal assistants, to understand and explain the decision-making process of the artificial intelligence (AI) model. Smart homes embedded with smart devices and sensors enabled many context-aware applications to recognize physical activities. This study presents XAI-HAR, a novel XAI-empowered human activity recognition (HAR) approach based on key features identified from the data collected from sensors located at different places in a smart home. XAI-HAR identifies a set of new features (i.e., the total number of sensors used in a specific activity), as physical key features selection (PKFS) based on weighting criteria. Next, it presents statistical key features selection (SKFS) (i.e., mean, standard deviation) to handle the outliers and higher class variance. The proposed XAI-HAR is evaluated using machine learning models, namely, random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), naive Bayes (NB) and deep learning models such as deep neural network (DNN), convolution neural network (CNN), and CNN-based long short-term memory (CNN-LSTM). Experiments demonstrate the superior performance of XAI-HAR using RF classifier over all other machine learning and deep learning models. For explainability, XAI-HAR uses Local Interpretable Model Agnostic (LIME) with an RF classifier. XAI-HAR achieves 0.96% of F-score for health and dementia classification and 0.95 and 0.97% for activity recognition of dementia and healthy individuals, respectively.


Asunto(s)
Inteligencia Artificial , Demencia , Humanos , Teorema de Bayes , Redes Neurales de la Computación , Concienciación
12.
Sci Rep ; 12(1): 17478, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261675

RESUMEN

With time, numerous online communication platforms have emerged that allow people to express themselves, increasing the dissemination of toxic languages, such as racism, sexual harassment, and other negative behaviors that are not accepted in polite society. As a result, toxic language identification in online communication has emerged as a critical application of natural language processing. Numerous academic and industrial researchers have recently researched toxic language identification using machine learning algorithms. However, Nontoxic comments, including particular identification descriptors, such as Muslim, Jewish, White, and Black, were assigned unrealistically high toxicity ratings in several machine learning models. This research analyzes and compares modern deep learning algorithms for multilabel toxic comments classification. We explore two scenarios: the first is a multilabel classification of Religious toxic comments, and the second is a multilabel classification of race or toxic ethnicity comments with various word embeddings (GloVe, Word2vec, and FastText) without word embeddings using an ordinary embedding layer. Experiments show that the CNN model produced the best results for classifying multilabel toxic comments in both scenarios. We compared the outcomes of these modern deep learning model performances in terms of multilabel evaluation metrics.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Lenguaje Natural , Aprendizaje Automático , Lenguaje , Algoritmos
13.
Sci Rep ; 12(1): 9537, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680983

RESUMEN

With time, textual data is proliferating, primarily through the publications of articles. With this rapid increase in textual data, anonymous content is also increasing. Researchers are searching for alternative strategies to identify the author of an unknown text. There is a need to develop a system to identify the actual author of unknown texts based on a given set of writing samples. This study presents a novel approach based on ensemble learning, DistilBERT, and conventional machine learning techniques for authorship identification. The proposed approach extracts the valuable characteristics of the author using a count vectorizer and bi-gram Term frequency-inverse document frequency (TF-IDF). An extensive and detailed dataset, "All the news" is used in this study for experimentation. The dataset is divided into three subsets (article1, article2, and article3). We limit the scope of the dataset and selected ten authors in the first scope and 20 authors in the second scope for experimentation. The experimental results of proposed ensemble learning and DistilBERT provide better performance for all the three subsets of the "All the news" dataset. In the first scope, the experimental results prove that the proposed ensemble learning approach from 10 authors provides a better accuracy gain of 3.14% and from DistilBERT 2.44% from the article1 dataset. Similarly, in the second scope from 20 authors, the proposed ensemble learning approach provides a better accuracy gain of 5.25% and from DistilBERT 7.17% from the article1 dataset, which is better than previous state-of-the-art studies.


Asunto(s)
Autoria , Aprendizaje Automático
14.
Comput Intell Neurosci ; 2022: 1450822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35535197

RESUMEN

Sign language plays a pivotal role in the lives of impaired people having speaking and hearing disabilities. They can convey messages using hand gesture movements. American Sign Language (ASL) recognition is challenging due to the increasing intra-class similarity and high complexity. This paper used a deep convolutional neural network for ASL alphabet recognition to overcome ASL recognition challenges. This paper presents an ASL recognition approach using a deep convolutional neural network. The performance of the DeepCNN model improves with the amount of given data; for this purpose, we applied the data augmentation technique to expand the size of training data from existing data artificially. According to the experiments, the proposed DeepCNN model provides consistent results for the ASL dataset. Experiments prove that the DeepCNN gives a better accuracy gain of 19.84%, 8.37%, 16.31%, 17.17%, 5.86%, and 3.26% as compared to various state-of-the-art approaches.


Asunto(s)
Redes Neurales de la Computación , Lengua de Signos , Gestos , Humanos , Movimiento , Reconocimiento en Psicología
15.
Math Biosci Eng ; 19(2): 1926-1943, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35135236

RESUMEN

Spam is any form of annoying and unsought digital communication sent in bulk and may contain offensive content feasting viruses and cyber-attacks. The voluminous increase in spam has necessitated developing more reliable and vigorous artificial intelligence-based anti-spam filters. Besides text, an email sometimes contains multimedia content such as audio, video, and images. However, text-centric email spam filtering employing text classification techniques remains today's preferred choice. In this paper, we show that text pre-processing techniques nullify the detection of malicious contents in an obscure communication framework. We use Spamassassin corpus with and without text pre-processing and examined it using machine learning (ML) and deep learning (DL) algorithms to classify these as ham or spam emails. The proposed DL-based approach consistently outperforms ML models. In the first stage, using pre-processing techniques, the long-short-term memory (LSTM) model achieves the highest results of 93.46% precision, 96.81% recall, and 95% F1-score. In the second stage, without using pre-processing techniques, LSTM achieves the best results of 95.26% precision, 97.18% recall, and 96% F1-score. Results show the supremacy of DL algorithms over the standard ones in filtering spam. However, the effects are unsatisfactory for detecting encrypted communication for both forms of ML algorithms.


Asunto(s)
Inteligencia Artificial , Correo Electrónico , Algoritmos , Comunicación , Aprendizaje Automático
16.
Front Public Health ; 10: 860536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372217

RESUMEN

Internet of Things (IoT) involves a set of devices that aids in achieving a smart environment. Healthcare systems, which are IoT-oriented, provide monitoring services of patients' data and help take immediate steps in an emergency. Currently, machine learning-based techniques are adopted to ensure security and other non-functional requirements in smart health care systems. However, no attention is given to classifying the non-functional requirements from requirement documents. The manual process of classifying the non-functional requirements from documents is erroneous and laborious. Missing non-functional requirements in the Requirement Engineering (RE) phase results in IoT oriented healthcare system with compromised security and performance. In this research, an experiment is performed where non-functional requirements are classified from the IoT-oriented healthcare system's requirement document. The machine learning algorithms considered for classification are Logistic Regression (LR), Support Vector Machine (SVM), Multinomial Naive Bayes (MNB), K-Nearest Neighbors (KNN), ensemble, Random Forest (RF), and hybrid KNN rule-based machine learning (ML) algorithms. The results show that our novel hybrid KNN rule-based machine learning algorithm outperforms others by showing an average classification accuracy of 75.9% in classifying non-functional requirements from IoT-oriented healthcare requirement documents. This research is not only novel in its concept of using a machine learning approach for classification of non-functional requirements from IoT-oriented healthcare system requirement documents, but it also proposes a novel hybrid KNN-rule based machine learning algorithm for classification with better accuracy. A new dataset is also created for classification purposes, comprising requirements related to IoT-oriented healthcare systems. However, since this dataset is small and consists of only 104 requirements, this might affect the generalizability of the results of this research.


Asunto(s)
Documentación/normas , Internet de las Cosas , Teorema de Bayes , Atención a la Salud , Humanos , Aprendizaje Automático
17.
Diagnostics (Basel) ; 12(5)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35626290

RESUMEN

Breast cancer is one of the most widespread diseases in women worldwide. It leads to the second-largest mortality rate in women, especially in European countries. It occurs when malignant lumps that are cancerous start to grow in the breast cells. Accurate and early diagnosis can help in increasing survival rates against this disease. A computer-aided detection (CAD) system is necessary for radiologists to differentiate between normal and abnormal cell growth. This research consists of two parts; the first part involves a brief overview of the different image modalities, using a wide range of research databases to source information such as ultrasound, histography, and mammography to access various publications. The second part evaluates different machine learning techniques used to estimate breast cancer recurrence rates. The first step is to perform preprocessing, including eliminating missing values, data noise, and transformation. The dataset is divided as follows: 60% of the dataset is used for training, and the rest, 40%, is used for testing. We focus on minimizing type one false-positive rate (FPR) and type two false-negative rate (FNR) errors to improve accuracy and sensitivity. Our proposed model uses machine learning techniques such as support vector machine (SVM), logistic regression (LR), and K-nearest neighbor (KNN) to achieve better accuracy in breast cancer classification. Furthermore, we attain the highest accuracy of 97.7% with 0.01 FPR, 0.03 FNR, and an area under the ROC curve (AUC) score of 0.99. The results show that our proposed model successfully classifies breast tumors while overcoming previous research limitations. Finally, we summarize the paper with the future trends and challenges of the classification and segmentation in breast cancer detection.

18.
Front Oncol ; 12: 873268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719987

RESUMEN

Magnetic resonance imaging is the most generally utilized imaging methodology that permits radiologists to look inside the cerebrum using radio waves and magnets for tumor identification. However, it is tedious and complex to identify the tumorous and nontumorous regions due to the complexity in the tumorous region. Therefore, reliable and automatic segmentation and prediction are necessary for the segmentation of brain tumors. This paper proposes a reliable and efficient neural network variant, i.e., an attention-based convolutional neural network for brain tumor segmentation. Specifically, an encoder part of the UNET is a pre-trained VGG19 network followed by the adjacent decoder parts with an attention gate for segmentation noise induction and a denoising mechanism for avoiding overfitting. The dataset we are using for segmentation is BRATS'20, which comprises four different MRI modalities and one target mask file. The abovementioned algorithm resulted in a dice similarity coefficient of 0.83, 0.86, and 0.90 for enhancing, core, and whole tumors, respectively.

19.
Front Public Health ; 10: 849185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309219

RESUMEN

In the last decade, smart computing has garnered much attention, particularly in ubiquitous environments, thus increasing the ease of everyday human life. Users can dynamically interact with the systems using different modalities in a smart computing environment. The literature discussed multiple mechanisms to enhance the modalities for communication using different knowledge sources. Among others, Multi-context System (MCS) has been proven quite significant to interlink various context domains dynamically to a distributed environment. MCS is a collection of different contexts (independent knowledge sources), and every context contains its own set of defined rules and facts and inference systems. These contexts are interlinked via bridge rules. However, the interaction among knowledge sources could have the consequences such as bringing out inconsistent results. These issues may report situations such as the system being unable to reach a conclusion or communication in different contexts becoming asynchronous. There is a need for a suitable framework to resolve inconsistencies. In this article, we provide a framework based on contextual defeasible reasoning and a formalism of multi-agent environment is to handle the issue of inconsistent information in MCS. Additionally, in this work, a prototypal simulation is designed using a simulation tool called NetLogo, and a formalism about a Parkinson's disease patient's case study is also developed. Both of these show the validity of the framework.


Asunto(s)
Atención a la Salud , Lógica , Comunicación , Simulación por Computador , Humanos
20.
Comput Intell Neurosci ; 2022: 6354579, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990145

RESUMEN

Coronavirus (COVID-19) is a highly severe infection caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2). The polymerase chain reaction (PCR) test is essential to confirm the COVID-19 infection, but it has certain limitations, including paucity of reagents, is computationally time-consuming, and requires expert clinicians. Clinicians suggest that the PCR test is not a reliable automated COVID-19 patient detection system. This study proposed a machine learning-based approach to evaluate the PCR role in COVID-19 detection. We collect real data containing 603 COVID-19 samples from the Pakistan Institute of Medical Sciences (PIMS) Hospital in Islamabad, Pakistan, during the third COVID-19 wave. The experiments are separated into two sets. The first set comprises 24 features, including PCR test results, whereas the second comprises 24 features without PCR test. The findings demonstrate that the decision tree achieves the best detection rate for positive and negative COVID-19 patients in both scenarios. The findings reveal that PCR does not contribute to detecting COVID-19 patients. The findings also aid in the early detection of COVID-19, mainly when PCR test results are insufficient for diagnosing COVID-19 and help developing countries with a paucity of PCR tests and specialist facilities.


Asunto(s)
COVID-19 , Benchmarking , COVID-19/diagnóstico , Humanos , Aprendizaje Automático , Pakistán/epidemiología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA