Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 20(5): 534-545, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962593

RESUMEN

Lymph-node (LN) stromal cell populations expand during the inflammation that accompanies T cell activation. Interleukin-17 (IL-17)-producing helper T cells (TH17 cells) promote inflammation through the induction of cytokines and chemokines in peripheral tissues. We demonstrate a critical requirement for IL-17 in the proliferation of LN and splenic stromal cells, particularly fibroblastic reticular cells (FRCs), during experimental autoimmune encephalomyelitis and colitis. Without signaling via the IL-17 receptor, activated FRCs underwent cell cycle arrest and apoptosis, accompanied by signs of nutrient stress in vivo. IL-17 signaling in FRCs was not required for the development of TH17 cells, but failed FRC proliferation impaired germinal center formation and antigen-specific antibody production. Induction of the transcriptional co-activator IκBζ via IL-17 signaling mediated increased glucose uptake and expression of the gene Cpt1a, encoding CPT1A, a rate-limiting enzyme of mitochondrial fatty acid oxidation. Hence, IL-17 produced by locally differentiating TH17 cells is an important driver of the activation of inflamed LN stromal cells, through metabolic reprogramming required to support proliferation and survival.


Asunto(s)
Proliferación Celular , Fibroblastos/inmunología , Interleucina-17/inmunología , Ganglios Linfáticos/inmunología , Células del Estroma/inmunología , Animales , Formación de Anticuerpos/genética , Formación de Anticuerpos/inmunología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Células Cultivadas , Colitis/genética , Colitis/inmunología , Colitis/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Fibroblastos/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Ganglios Linfáticos/citología , Ganglios Linfáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/inmunología , Receptores de Interleucina-17/metabolismo , Células del Estroma/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
2.
Eur Respir J ; 63(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37918852

RESUMEN

RATIONALE: Recent data suggest that the localisation of airway epithelial cells in the distal lung in idiopathic pulmonary fibrosis (IPF) may drive pathology. We set out to discover whether chemokines expressed in these ectopic airway epithelial cells may contribute to the pathogenesis of IPF. METHODS: We analysed whole lung and single-cell transcriptomic data obtained from patients with IPF. In addition, we measured chemokine levels in blood, bronchoalveolar lavage (BAL) of IPF patients and air-liquid interface cultures. We employed ex vivo donor and IPF lung fibroblasts and an animal model of pulmonary fibrosis to test the effects of chemokine signalling on fibroblast function. RESULTS: By analysis of whole-lung transcriptomics, protein and BAL, we discovered that CXCL6 (a member of the interleukin-8 family) was increased in patients with IPF. Elevated CXCL6 levels in the BAL of two cohorts of patients with IPF were associated with poor survival (hazard ratio of death or progression 1.89, 95% CI 1.16-3.08; n=179, p=0.01). By immunostaining and single-cell RNA sequencing, CXCL6 was detected in secretory cells. Administration of mCXCL5 (LIX, murine CXCL6 homologue) to mice increased collagen synthesis with and without bleomycin. CXCL6 increased collagen I levels in donor and IPF fibroblasts 4.4-fold and 1.7-fold, respectively. Both silencing of and chemical inhibition of CXCR1/2 blocked the effects of CXCL6 on collagen, while overexpression of CXCR2 increased collagen I levels 4.5-fold in IPF fibroblasts. CONCLUSIONS: CXCL6 is expressed in ectopic airway epithelial cells. Elevated levels of CXCL6 are associated with IPF mortality. CXCL6-driven collagen synthesis represents a functional consequence of ectopic localisation of airway epithelial cells in IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Animales , Humanos , Ratones , Bleomicina , Quimiocina CXCL6/metabolismo , Quimiocinas/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , Pulmón/patología
3.
Cytokine ; 148: 155715, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34587561

RESUMEN

The IL-17 family is structurally distinct from other cytokine subclasses. IL-17A and IL-17F, the most closely related of this family, form homodimers and an IL-17AF heterodimer. While IL-17A and IL-17F exhibit similar activities in many settings, in others their functions are divergent. To better understand the function of IL-17F in vivo, we created mice harboring a mutation in Il17f originally described in humans with unexplained chronic mucosal candidiasis (Ser-65-Leu). We evaluated Il17fS65L/S65L mice in DSS-colitis, as this is one of the few settings where IL-17A and IL-17F exhibit opposing activities. Specifically, IL-17A is protective of the gut epithelium, a finding that was revealed when trials of anti-IL-17A biologics in Crohn's disease failed and recapitulated in many mouse models of colitis. In contrast, mice lacking IL-17F are resistant to DSS-colitis, partly attributable to alterations in intestinal microbiota that mobilize Tregs. Here we report that Il17fS65L/S65L mice do not phenocopy Il17f-/- mice in DSS colitis, but rather exhibited a worsening disease phenotype much like Il17a-/- mice. Gut inflammation in Il17fS65L/S65L mice correlated with reduced Treg accumulation and lowered intestinal levels of Clostridium cluster XIV. Unexpectedly, the protective DSS-colitis phenotype in Il17f-/- mice could be reversed upon co-housing with Il17fS65L/S65L mice, also correlating with Clostridium cluster XIV levels in gut. Thus, the Il17fS65L/S65L phenotype resembles an IL-17A deficiency more closely than IL-17F deficiency in the setting of DSS colitis.


Asunto(s)
Colitis/inducido químicamente , Colitis/genética , Interleucina-17/metabolismo , Mutación/genética , Animales , Colitis/inmunología , Colon/inmunología , Colon/patología , Sulfato de Dextran , Susceptibilidad a Enfermedades , Microbioma Gastrointestinal , Humanos , Interleucina-17/genética , Ratones Endogámicos C57BL , Fenotipo , Receptores de Interleucina-17/metabolismo , Transducción de Señal , Linfocitos T Reguladores/inmunología
4.
PLoS Pathog ; 12(11): e1005952, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27814401

RESUMEN

The incidence of life-threatening disseminated Candida albicans infections is increasing in hospitalized patients, with fatalities as high as 60%. Death from disseminated candidiasis in a significant percentage of cases is due to fungal invasion of the kidney, leading to renal failure. Treatment of candidiasis is hampered by drug toxicity, the emergence of antifungal drug resistance and lack of vaccines against fungal pathogens. IL-17 is a key mediator of defense against candidiasis. The underlying mechanisms of IL-17-mediated renal immunity have so far been assumed to occur solely through the regulation of antimicrobial mechanisms, particularly activation of neutrophils. Here, we identify an unexpected role for IL-17 in inducing the Kallikrein (Klk)-Kinin System (KKS) in C. albicans-infected kidney, and we show that the KKS provides significant renal protection in candidiasis. Microarray data indicated that Klk1 was upregulated in infected kidney in an IL-17-dependent manner. Overexpression of Klk1 or treatment with bradykinin rescued IL-17RA-/- mice from candidiasis. Therapeutic manipulation of IL-17-KKS pathways restored renal function and prolonged survival by preventing apoptosis of renal cells following C. albicans infection. Furthermore, combining a minimally effective dose of fluconazole with bradykinin markedly improved survival compared to either drug alone. These results indicate that IL-17 not only limits fungal growth in the kidney, but also prevents renal tissue damage and preserves kidney function during disseminated candidiasis through the KKS. Since drugs targeting the KKS are approved clinically, these findings offer potential avenues for the treatment of this fatal nosocomial infection.


Asunto(s)
Candidiasis/inmunología , Interleucina-17/inmunología , Sistema Calicreína-Quinina/inmunología , Enfermedades Renales/inmunología , Enfermedades Renales/microbiología , Animales , Western Blotting , Modelos Animales de Enfermedad , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Mediators Inflamm ; 2018: 5103672, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405320

RESUMEN

Chronic inflammation has an important role in the development and progression of most fibrotic diseases, for which no effective treatments exist. Tubulointerstitial fibrosis (TF) is characterized by irreversible deposition of fibrous tissue in chronic kidney diseases. Prolonged injurious stimuli and chronic inflammation regulate downstream events that lead to TF. In recent years, interleukin-17 (IL-17) has been strongly linked to organ fibrosis. However, the role of IL-17 receptor signaling in TF is an active area of debate. Using the unilateral ureteral obstruction (UUO) mouse model of TF, we show that IL-17 receptor A-deficient mice (Il17ra-/- ) exhibit increased TF in the obstructed kidney. Consequently, overexpression of IL-17 restored protection in mice with UUO. Reduced renal expression of matrix-degrading enzymes results in failure to degrade ECM proteins, thus contributing to the exaggerated TF phenotype in Il17ra -/- mice. We demonstrate that the antifibrotic kallikrein-kinin system (KKS) is activated in the obstructed kidney in an IL-17-dependent manner. Accordingly, Il17ra-/- mice receiving bradykinin, the major end-product of KKS activation, prevents TF development by upregulating the expression of matrix-degrading enzymes. Finally, we show that treatment with specific agonists for bradykinin receptor 1 or 2 confers renal protection against TF. Overall, our results highlight an intriguing link between IL-17 and activation of KKS in protection against TF, the common final outcome of chronic kidney conditions leading to devastating end-stage renal diseases.


Asunto(s)
Fibrosis/metabolismo , Fibrosis/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Riñón/metabolismo , Riñón/patología , Receptores de Interleucina-17/metabolismo , Animales , Western Blotting , Enfermedades Renales/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interleucina-17/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
6.
Bioorg Med Chem Lett ; 26(15): 3525-8, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27324976

RESUMEN

A series of novel molecules containing thiazole ring structure were designed and synthesized. The structures of the synthesized compounds were elucidated and confirmed by (1)H NMR, (13)C NMR, Mass spectrum and the purity was checked through HPLC analysis. Among these synthesized compounds, 3a-3i and 6a-6c were tested for their antimicrobial activity (minimum inhibitory concentration) against a series of strains of Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and against the strains of Candida albicans, Aspergillus flavus and Aspergillus niger for antifungal activity respectively. The results of the antimicrobial screening data revealed that most of the tested compounds showed moderate to good microbial inhibitions.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Ácidos Carboxílicos/farmacología , Tiazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Aspergillus flavus/efectos de los fármacos , Aspergillus niger/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Candida albicans/efectos de los fármacos , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/química , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
7.
Avian Pathol ; 45(2): 235-43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26813292

RESUMEN

Salmonella enterica serovar Gallinarum (SG) is a Gram-negative intracellular host-adapted pathogen that causes fowl typhoid. Attenuated strains of SG are proven and widely used vaccine candidates because of advantages like induction of strong humoral and cell-mediated immune responses. In the present study, we investigated the interaction of chicken bone marrow-derived dendritic cells (chBM-DCs) with an attenuated SG (JOL1355) strain that secretes a heat-labile enterotoxin B subunit protein previously shown to successfully vaccinate chickens. ChBM-DCs were isolated and cultured in the presence of recombinant chicken GM-CSF and IL-4 cytokines. The chBM-DCs were infected with JOL1355 at an multiplicity of infection of 10. JOL1355 was able to invade dendritic cells (DCs); however, the survival of JOL1355 in DCs decreased over time. At 24 h post infection, IL-6, IL-10 and IFN-γ transcript levels were significantly increased in JOL1355-infected DCs compared to non-stimulated DCs. Flow cytometry analysis showed an increased proportion of cells producing CD40, CD80, and MHC class II in the JOL1355-infected cultures compared to the non-stimulated control. In addition, JOL1355-stimulated chBM-DCs could induce significant expression of IL-2 in co-culture with autologous CD4+ T cells. Based on these results, we conclude that chBM-DCs are capable of internalizing the live attenuated SG vaccine candidate and the infected chBM-DCs show signs of maturation as evidenced by the upregulated expression of costimulatory molecules and cytokines.


Asunto(s)
Vacunas Bacterianas/inmunología , Pollos/inmunología , Enterotoxinas/inmunología , Enfermedades de las Aves de Corral/prevención & control , Salmonelosis Animal/prevención & control , Salmonella enterica/inmunología , Animales , Médula Ósea/inmunología , Citocinas/inmunología , Células Dendríticas/inmunología , Inmunidad Celular , Vacunas Atenuadas
8.
Avian Dis ; 59(2): 269-76, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26473678

RESUMEN

A major limiting issue of bacterial ghost technology involves the stable maintenance of Phix174 lysis gene E expression. Unwanted leaky expression of gene E in the absence of induction temperature results in reduced biomass production of host bacterium, consequently leading to the lower yield of bacterial ghost. To mitigate the leaky expression status of lysis gene E, we utilized a novel E-lysis system in which gene E is located between sense λpR promoter with a CI857 regulator and antisense ParaBAD promoter with the AraC regulator. In the presence of L-arabinose at 28 C, unwanted transcription of lysis gene E from λpR promoter is repressed by a simultaneous transcription event from ParaBAD promoter by means of anti-sense RNA-mediated inhibition. Tight repression of lysis gene E in the absence of induction temperature resulted in higher bacterial cell number in culture suspension and, consequently, higher production of Salmonella Gallinarum (SG) ghost biomass. The safety and protective efficacy of the SG ghost vaccine were further examined in chickens. All of the immunized chickens showed significantly higher mucosal and systemic antibody responses accompanied by a potent antigen-specific lymphocyte proliferative response. Vaccination of chickens with SG ghost preparation offered efficient protection against wild-type SG challenge.


Asunto(s)
Vacunas Bacterianas/inmunología , Pollos , Enfermedades de las Aves de Corral/prevención & control , Fagos de Salmonella , Salmonella/citología , Animales , Antígenos Bacterianos , Biomasa , Membrana Celular/ultraestructura , Inmunidad Humoral , Inmunoglobulina A/sangre , Microscopía Electroquímica de Rastreo , Enfermedades de las Aves de Corral/microbiología
9.
Acta Vet Hung ; 63(4): 401-12, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26599088

RESUMEN

Escherichia coli heat-labile enterotoxin B subunit (LTB) protein is a potent adjuvant. Salmonella Gallinarum ghosts carrying LTB (S. Gallinarum-LTB ghosts) were genetically constructed using a plasmid, pJHL187-LTB, designed for the co-expression of the LTB and E lysis proteins. This study evaluates the immunopotentiating effects of Montanide™ ISA 70 VG on S. Gallinarum-LTB ghost vaccination against fowl typhoid. Five-week-old layer chickens were injected intramuscularly with sterile PBS (non-immunised control, Group A), S. Gallinarum-LTB ghost (Group B) or S. Gallinarum-LTB ghost emulsified with Montanide™ ISA 70 VG adjuvant (Group C). Chickens from both Groups B and C showed significant induction of antigen-specific systemic IgG response compared to controls; in addition, Group C showed enhanced induction of systemic IgG response compared to Group B. We observed significant induction of antigen-specific lymphocyte proliferative response and increased mRNA levels of Th1 cytokines (IFN-γ and IL2) in both Groups B and C. Furthermore, in the challenge experiment with a virulent strain of S. Gallinarum, Group C showed higher survival rates compared with other groups. These results indicate that vaccination with the S. Gallinarum-LTB ghost in combination with Montanide™ ISA 70 VG may enhance the protective immunity against fowl typhoid.

10.
Avian Pathol ; 43(6): 506-13, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25245884

RESUMEN

In this study we describe the generation of a safe, immunogenic, genetically inactivated Salmonella Typhimurium ghost vaccine candidate carrying the Escherichia coli heat-labile enterotoxin B subunit (LTB) protein as an adjuvant molecule. An asd(+) p15A ori(-) plasmid pJHL187-LTB harbouring the E lysis gene cassette and a foreign antigen delivery cassette containing the eltB gene was used to transform a Δasd Salmonella Typhimurium (JOL1311) strain to construct the ghost strain, JOL1499. Incubation of mid-logarithmic phase JOL1499 cultures at 42°C resulted in co-expression of the eltB and E lysis genes, leading to the generation of Salmonella Typhimurium ghost cells carrying the LTB protein (Salmonella Typhimurium-LTB ghost). The production of LTB in Salmonella Typhimurium-LTB ghost preparations was confirmed by western blot analysis, and functional activity of the LTB protein to bind with GM1 receptors was determined by means of GM1 enzyme-linked immunosorbent assay. Efficacy of the Salmonella Typhimurium-LTB ghost as a vaccine candidate was evaluated in a chicken model using 56 chickens at 5 weeks old, which were divided into four groups (n = 14): group A was designated the non-vaccinated control group, whereas the birds in groups B, C, and D were immunized intramuscularly with 10(9), 10(8), and 10(7) ghost cells, respectively. Compared with the non-immunized chickens (group A), immunized chickens (groups B, C and D) exhibited increased titres of plasma IgG and intestinal secretory IgA antibodies. After oral challenge with 10(9) colony-forming units of a virulent Salmonella Typhimurium strain, the vaccinated group B birds showed a decrease in internal organ colonization with the challenge strain.


Asunto(s)
Toxinas Bacterianas/inmunología , Pollos/inmunología , Enterotoxinas/inmunología , Proteínas de Escherichia coli/inmunología , Enfermedades de las Aves de Corral/prevención & control , Salmonelosis Animal/prevención & control , Salmonella typhimurium/inmunología , Vacunación/veterinaria , Adyuvantes Inmunológicos , Animales , Toxinas Bacterianas/genética , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Femenino , Expresión Génica , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Vacunas de Productos Inactivados/inmunología
11.
Acta Vet Hung ; 62(3): 293-303, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24659715

RESUMEN

This study aimed to investigate the adjuvant effect of recombinant attenuated Salmonella expressing cholera toxin B subunit (CTB) and Escherichia coli heat-labile enterotoxin B subunit (LTB) for the P-fimbriae subunit-based vaccine of avian pathogenic E. coli (APEC) in a murine model. The PapA-specific sIgA and IgG responses were significantly enhanced after immunisation with the Salmonella-PapA vaccine in the presence of CTB or LTB. The group immunised with the Salmonella-LTB strain promoted Th1-type immunity, whereas that immunised with the Salmonella-CTB strain produced Th2-type immunity. We concluded that both Salmonella-CTB and -LTB strains can enhance the immune response to PapA, and that the LTB strain may be a more effective adjuvant for APEC vaccination, which requires higher Th1-type immunity for protection. Thus, our findings provide evidence that immunisation with an adjuvant, LTB, is one of the strategies of developing effective vaccines against P-fimbriated APEC.

12.
Infect Immun ; 80(4): 1502-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22290147

RESUMEN

A new strategy to develop an effective vaccine is essential to control food-borne Salmonella enterica serovar Enteritidis infections. Bacterial ghosts (BGs), which are nonliving, Gram-negative bacterial cell envelopes, are generated by expulsion of the cytoplasmic contents from bacterial cells through controlled expression using the modified cI857/λ P(R)/gene E expression system. In the present study, the pJHL99 lysis plasmid carrying the mutated lambda pR37-cI857 repressor and PhiX174 lysis gene E was constructed and transformed in S. Enteritidis to produce a BG. Temperature induction of the lysis gene cassette at 42°C revealed quantitative killing of S. Enteritidis. The S. Enteritidis ghost was characterized using scanning and transmission electron microscopy to visualize the transmembrane tunnel structure and loss of cytoplasmic materials, respectively. The efficacy of the BG as a vaccine candidate was evaluated in a chicken model using 60 10-day-old chickens, which were divided into four groups (n = 15), A, B, C, and D. Group A was designated as the nonimmunized control group, whereas the birds in groups B, C, and D were immunized via the intramuscular, subcutaneous, and oral routes, respectively. The chickens from all immunized groups showed significant increases in plasma IgG and intestinal secretory IgA levels. The lymphocyte proliferation response and CD3(+) CD4(+) and CD3(+) CD8(+) T cell subpopulations were also significantly increased in all immunized groups. The data indicate that both humoral and cell-mediated immune responses are robustly stimulated. Based on an examination of the protection efficacy measured by observations of gross lesions in the organs and bacterial recovery, the candidate vaccine can provide efficient protection against virulent challenge.


Asunto(s)
Membrana Celular/inmunología , Pollos , Enfermedades de las Aves de Corral/inmunología , Salmonelosis Animal/inmunología , Vacunas contra la Salmonella/inmunología , Salmonella enteritidis/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Pollos/inmunología , Pollos/microbiología , Vías de Administración de Medicamentos/veterinaria , Genes Virales , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Activación de Linfocitos , Plásmidos , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Salmonelosis Animal/microbiología , Salmonelosis Animal/prevención & control , Vacunas de Productos Inactivados/inmunología , Proteínas Virales/genética
13.
Vet Res ; 43: 44, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22620989

RESUMEN

In order to develop a novel, safe and immunogenic fowl typhoid (FT) vaccine candidate, a Salmonella Gallinarum ghost with controlled expression of the bacteriophage PhiX174 lysis gene E was constructed using pMMP99 plasmid in this study. The formation of the Salmonella Gallinarum ghost with tunnel formation and loss of cytoplasmic contents was observed by scanning electron microscopy and transmission electron microscopy. No viable cells were detectable 24 h after the induction of gene E expression by an increase in temperature from 37 °C to 42 °C. The safety and protective efficacy of the Salmonella Gallinarum ghost vaccine was tested in chickens that were divided into four groups: group A (non-immunized control), group B (orally immunized), group C (subcutaneously immunized) and group D (intramuscularly immunized). The birds were immunized at day 7 of age. None of the immunized animals showed any adverse reactions such as abnormal behavior, mortality, or signs of FT such as anorexia, depression, or diarrhea. These birds were subsequently challenged with a virulent Salmonella Gallinarum strain at 3 weeks post-immunization (wpi). Significant protection against the virulent challenge was observed in all immunized groups based on mortality and post-mortem lesions compared to the non-immunized control group. In addition, immunization with the Salmonella Gallinarum ghosts induced significantly high systemic IgG response in all immunized groups. Among the groups, orally-vaccinated group B showed significantly higher levels of secreted IgA. A potent antigen-specific lymphocyte activation response along with significantly increased percentages of CD4+ and CD8+ T lymphocytes found in all immunized groups clearly indicate the induction of cellular immune responses. Overall, these findings suggest that the newly constructed Salmonella Gallinarum ghost appears to be a safe, highly immunogenic, and efficient non-living bacterial vaccine candidate that protects against FT.


Asunto(s)
Pollos , Enfermedades de las Aves de Corral/inmunología , Salmonelosis Animal/inmunología , Vacunas contra la Salmonella/inmunología , Salmonella enterica/inmunología , Proteínas Virales/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Citometría de Flujo/veterinaria , Inmunidad Celular , Inmunidad Humoral , Plásmidos/genética , Reacción en Cadena de la Polimerasa/veterinaria , Vacunas de Productos Inactivados/inmunología
14.
Cell Host Microbe ; 30(4): 530-544.e6, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35316647

RESUMEN

Combating fungal pathogens poses metabolic challenges for neutrophils, key innate cells in anti-Candida albicans immunity, yet how host-pathogen interactions cause remodeling of the neutrophil metabolism is unclear. We show that neutrophils mediate renal immunity to disseminated candidiasis by upregulating glucose uptake via selective expression of glucose transporter 1 (Glut1). Mechanistically, dectin-1-mediated recognition of ß-glucan leads to activation of PKCδ, which triggers phosphorylation, localization, and early glucose transport by a pool of pre-formed Glut1 in neutrophils. These events are followed by increased Glut1 gene transcription, leading to more sustained Glut1 accumulation, which is also dependent on the ß-glucan/dectin-1/CARD9 axis. Card9-deficient neutrophils show diminished glucose incorporation in candidiasis. Neutrophil-specific Glut1-ablated mice exhibit increased mortality in candidiasis caused by compromised neutrophil phagocytosis, reactive oxygen species (ROS), and neutrophil extracellular trap (NET) formation. In human neutrophils, ß-glucan triggers metabolic remodeling and enhances candidacidal function. Our data show that the host-pathogen interface increases glycolytic activity in neutrophils by regulating Glut1 expression, localization, and function.


Asunto(s)
Candidiasis , Transportador de Glucosa de Tipo 1 , Neutrófilos , beta-Glucanos , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Candida albicans , Candidiasis/inmunología , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Ratones , Neutrófilos/inmunología , beta-Glucanos/metabolismo
15.
Curr Opin Microbiol ; 62: 1-7, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33991758

RESUMEN

Disseminated candidiasis is a hospital-acquired infection that results in high degree of mortality despite antifungal treatment. Autopsy studies revealed that kidneys are the major target organs in disseminated candidiasis and death due to kidney damage is a frequent outcome in these patients. Thus, the need for effective therapeutic strategies to mitigate kidney damage in disseminated candidiasis is compelling. Recent studies have highlighted the essential contribution of kidney-specific immune response in host defense against systemic infection. Crosstalk between kidney-resident and infiltrating immune cells aid in the clearance of fungi and prevent tissue damage in disseminated candidiasis. In this review, we provide our recent understanding on antifungal immunity in the kidney with an emphasis on IL-17-mediated renal defense in disseminated candidiasis.


Asunto(s)
Antifúngicos , Candidiasis , Antifúngicos/uso terapéutico , Candida albicans , Humanos , Riñón
16.
Immunohorizons ; 5(1): 16-24, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33451988

RESUMEN

Infections are the second major cause of mortality in patients with kidney disease and accompanying uremia. Both vascular access and non-access-related infections contribute equally to the infection-related deaths in patients with kidney disease. Dialysis is the most common cause of systemic infection by Candida albicans in these patients. C albicans also reside in the gastrointestinal tract as a commensal fungus. However, the contribution of gut-derived C albicans in non-access-related infections in kidney disease is unknown. Using a mouse model of kidney disease, we demonstrate that uremic animals showed increased gut barrier permeability, impaired mucosal defense, and dysbiosis. The disturbance in gut homeostasis is sufficient to drive the translocation of microbiota and intestinal pathogen Citrobacter rodentium to extraintestinal sites but not C albicans Interestingly, a majority of uremic animals showed fungal translocation only when the gut barrier integrity is disrupted. Our data demonstrate that uremia coupled with gut mucosal damage may aid in the translocation of C. albicans and cause systemic infection in kidney disease. Because most of the individuals with kidney disease suffer from some form of gut mucosal damage, these results have important implications in the risk stratification and control of non-access-related opportunistic fungal infections in these patients.


Asunto(s)
Candida albicans/fisiología , Citrobacter rodentium/fisiología , Mucosa Intestinal/microbiología , Intestinos/microbiología , Uremia/microbiología , Animales , Citrobacter rodentium/crecimiento & desarrollo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Humanos , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Simbiosis
17.
JCI Insight ; 6(13)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236049

RESUMEN

Antibody-mediated glomerulonephritis (AGN) is a clinical manifestation of many autoimmune kidney diseases for which few effective treatments exist. Chronic inflammatory circuits in renal glomerular and tubular cells lead to tissue damage in AGN. These cells are targeted by the cytokine IL-17, which has recently been shown to be a central driver of the pathogenesis of AGN. However, surprisingly little is known about the regulation of pathogenic IL-17 signaling in the kidney. Here, using a well-characterized mouse model of AGN, we show that IL-17 signaling in renal tubular epithelial cells (RTECs) is necessary for AGN development. We also show that Regnase-1, an RNA binding protein with endoribonuclease activity, is a negative regulator of IL-17 signaling in RTECs. Accordingly, mice with a selective Regnase-1 deficiency in RTECs exhibited exacerbated kidney dysfunction in AGN. Mechanistically, Regnase-1 inhibits IL-17-driven expression of the transcription factor IκBξ and, consequently, its downstream gene targets, including Il6 and Lcn2. Moreover, deletion of Regnase-1 in human RTECs reduced inflammatory gene expression in a IκBξ-dependent manner. Overall, these data identify an IL-17-driven inflammatory circuit in RTECs during AGN that is constrained by Regnase-1.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Glomerulonefritis , Proteínas I-kappa B/metabolismo , Interleucina-17/metabolismo , Túbulos Renales , Proteínas Proto-Oncogénicas/metabolismo , Ribonucleasas , Animales , Células Epiteliales/metabolismo , Glomerulonefritis/inmunología , Glomerulonefritis/fisiopatología , Inmunidad Innata , Inflamación/metabolismo , Túbulos Renales/inmunología , Túbulos Renales/patología , Ratones , Insuficiencia Renal/inmunología , Insuficiencia Renal/metabolismo , Ribonucleasas/deficiencia , Ribonucleasas/inmunología , Transducción de Señal/inmunología
18.
Sci Immunol ; 6(61)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215679

RESUMEN

Excessive cytokine activity underlies many autoimmune conditions, particularly through the interleukin-17 (IL-17) and tumor necrosis factor-α (TNFα) signaling axis. Both cytokines activate nuclear factor κB, but appropriate induction of downstream effector genes requires coordinated activation of other transcription factors, notably, CCAAT/enhancer binding proteins (C/EBPs). Here, we demonstrate the unexpected involvement of a posttranscriptional "epitranscriptomic" mRNA modification [N6-methyladenosine (m6A)] in regulating C/EBPß and C/EBPδ in response to IL-17A, as well as IL-17F and TNFα. Prompted by the observation that C/EBPß/δ-encoding transcripts contain m6A consensus sites, we show that Cebpd and Cebpb mRNAs are subject to m6A modification. Induction of C/EBPs is enhanced by an m6A methylase "writer" and suppressed by a demethylase "eraser." The only m6A "reader" found to be involved in this pathway was IGF2BP2 (IMP2), and IMP2 occupancy of Cebpd and Cebpb mRNA was enhanced by m6A modification. IMP2 facilitated IL-17-mediated Cebpd mRNA stabilization and promoted translation of C/EBPß/δ in response to IL-17A, IL-17F, and TNFα. RNA sequencing revealed transcriptome-wide IL-17-induced transcripts that are IMP2 influenced, and RNA immunoprecipitation sequencing identified the subset of mRNAs that are directly occupied by IMP2, which included Cebpb and Cebpd Lipocalin-2 (Lcn2), a hallmark of autoimmune kidney injury, was strongly dependent on IL-17, IMP2, and C/EBPß/δ. Imp2-/- mice were resistant to autoantibody-induced glomerulonephritis (AGN), showing impaired renal expression of C/EBPs and Lcn2 Moreover, IMP2 deletion initiated only after AGN onset ameliorated disease. Thus, posttranscriptional regulation of C/EBPs through m6A/IMP2 represents a previously unidentified paradigm of cytokine-driven autoimmune inflammation.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Potenciadoras de Unión a CCAAT/inmunología , Interleucina-17/inmunología , Proteínas de Unión al ARN/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Adenosina/inmunología , Animales , Autoinmunidad/inmunología , Proteínas Potenciadoras de Unión a CCAAT/genética , Línea Celular , Femenino , Humanos , Inflamación/inmunología , Interleucina-17/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión al ARN/genética
19.
Sci Transl Med ; 12(548)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32554707

RESUMEN

Disseminated candidiasis caused by the fungus Candida albicans is a major clinical problem in individuals with kidney disease and accompanying uremia; disseminated candidiasis fatality is twice as common in patients with uremia as those with normal kidney function. Many antifungal drugs are nephrotoxic, making treatment of these patients particularly challenging. The underlying basis for this impaired capacity to control infections in uremic individuals is poorly understood. Here, we show in multiple models that uremic mice exhibit an increased susceptibility to systemic fungal infection. Uremia inhibits Glut1-mediated uptake of glucose in neutrophils by causing aberrant activation of GSK3ß, resulting in reduced ROS generation and hence impaired killing of C. albicans in mice. Consequently, pharmacological inhibition of GSK3ß restored glucose uptake and rescued ROS production and candidacidal function of neutrophils in uremic mice. Similarly, neutrophils isolated from patients with kidney disease and undergoing hemodialysis showed similar defect in the fungal killing activity, a phenotype rescued in the presence of a GSK3ß inhibitor. These findings reveal a mechanism of neutrophil dysfunction during uremia and suggest a potentially translatable therapeutic avenue for treatment of disseminated candidiasis.


Asunto(s)
Candidiasis , Enfermedades Renales , Animales , Candida albicans , Candidiasis/complicaciones , Candidiasis/tratamiento farmacológico , Glucosa , Humanos , Ratones , Neutrófilos
20.
JCI Insight ; 3(9)2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29720566

RESUMEN

Kidney injury is a frequent outcome in patients with disseminated Candida albicans fungal infections. IL-17 receptor (IL-17R) signaling is critical for renal protection against disseminated candidiasis, but the identity and function of IL-17-responsive cells in mediating renal defense remains an active area of debate. Using BM chimeras, we found that IL-17R signaling is required only in nonhematopoietic cells for immunity to systemic C. albicans infection. Since renal tubular epithelial cells (RTEC) are highly responsive to IL-17 in vitro, we hypothesized that RTEC might be the dominant target of IL-17 activity in the infected kidney. We generated mice with a conditional deletion of IL-17 receptor A (Il17ra) in RTEC (Il17raΔRTEC). Strikingly, Il17raΔRTEC mice showed enhanced kidney damage and early mortality following systemic infection, very similar to Il17ra-/- animals. Increased susceptibility to candidiasis in Il17raΔRTEC mice was associated with diminished activation of the renal protective Kallikrein-kinin system (KKS), resulting in reduced apoptosis of kidney-resident cells during hyphal invasion. Moreover, protection was restored by treatment with bradykinin, the major end-product of KKS activation, which was mediated dominantly via bradykinin receptor b1. These data show that IL-17R signaling in RTEC is necessary and likely sufficient for IL-17-mediated renal defense against fatal systemic C. albicans infection.


Asunto(s)
Lesión Renal Aguda/inmunología , Candidemia/inmunología , Membrana Basal Glomerular/metabolismo , Receptores de Interleucina-17/inmunología , Receptores de Interleucina-17/metabolismo , Transducción de Señal/inmunología , Lesión Renal Aguda/microbiología , Traslado Adoptivo , Animales , Bradiquinina/farmacología , Candida albicans , Células Epiteliales/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Membrana Basal Glomerular/citología , Sistema Calicreína-Quinina/efectos de los fármacos , Sistema Calicreína-Quinina/fisiología , Túbulos Renales/metabolismo , Masculino , Ratones , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Interleucina-17/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA