Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 122(12): 2047-51, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23940280

RESUMEN

Induced pluripotent stem cells (iPSCs) hold great promise for modeling human hematopoietic diseases. However, intrinsic variability in the capacities of different iPSC lines for hematopoietic development complicates comparative studies and is currently unexplained. We created and analyzed 3 separate iPSC clones from fibroblasts of 3 different normal individuals using a standardized approach that included excision of integrated reprogramming genes by Cre-Lox mediated recombination. Gene expression profiling and hematopoietic differentiation assays showed that independent lines from the same individual were generally more similar to one another than those from different individuals. However, one iPSC line (WT2.1) exhibited a distinctly different gene expression, proliferation rate, and hematopoietic developmental potential relative to all other iPSC lines. This "outlier" clone also acquired extensive copy number variations (CNVs) during reprogramming, which may be responsible for its divergent properties. Our data indicate how inherent and acquired genetic differences can influence iPSC properties, including hematopoietic potential.


Asunto(s)
Heterogeneidad Genética , Hematopoyesis/fisiología , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular , Línea Celular , Análisis por Conglomerados , Variaciones en el Número de Copia de ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Trombopoyesis/genética
2.
Am J Physiol Cell Physiol ; 307(5): C415-30, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24871858

RESUMEN

Understanding differences in gene expression that increase risk for pulmonary arterial hypertension (PAH) is essential to understanding the molecular basis for disease. Previous studies on patient samples were limited by end-stage disease effects or by use of nonadherent cells, which are not ideal to model vascular cells in vivo. These studies addressed the hypothesis that pathological processes associated with PAH may be identified via a genetic signature common across multiple cell types. Expression array experiments were initially conducted to analyze cell types at different stages of vascular differentiation (mesenchymal stromal and endothelial) derived from PAH patient-specific induced pluripotent stem (iPS) cells. Molecular pathways that were altered in the PAH cell lines were then compared with those in fibroblasts from 21 patients, including those with idiopathic and heritable PAH. Wnt was identified as a target pathway and was validated in vitro using primary patient mesenchymal and endothelial cells. Taken together, our data suggest that the molecular lesions that cause PAH are present in all cell types evaluated, regardless of origin, and that stimulation of the Wnt signaling pathway was a common molecular defect in both heritable and idiopathic PAH.


Asunto(s)
Diferenciación Celular/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Células Madre Pluripotentes/patología , Vía de Señalización Wnt/genética , Línea Celular , Células Cultivadas , Células Endoteliales/patología , Células Endoteliales/fisiología , Hipertensión Pulmonar Primaria Familiar , Humanos , Células Madre Pluripotentes/fisiología , Mucosa Respiratoria/patología , Mucosa Respiratoria/fisiología
3.
Stem Cells ; 28(10): 1728-40, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20715179

RESUMEN

The development of methods to achieve efficient reprogramming of human cells while avoiding the permanent presence of reprogramming transgenes represents a critical step toward the use of induced pluripotent stem cells (iPSC) for clinical purposes, such as disease modeling or reconstituting therapies. Although several methods exist for generating iPSC free of reprogramming transgenes from mouse cells or neonatal normal human tissues, a sufficiently efficient reprogramming system is still needed to achieve the widespread derivation of disease-specific iPSC from humans with inherited or degenerative diseases. Here, we report the use of a humanized version of a single lentiviral "stem cell cassette" vector to accomplish efficient reprogramming of normal or diseased skin fibroblasts obtained from humans of virtually any age. Simultaneous transfer of either three or four reprogramming factors into human target cells using this single vector allows derivation of human iPSC containing a single excisable viral integration that on removal generates human iPSC free of integrated transgenes. As a proof of principle, here we apply this strategy to generate >100 lung disease-specific iPSC lines from individuals with a variety of diseases affecting the epithelial, endothelial, or interstitial compartments of the lung, including cystic fibrosis, α-1 antitrypsin deficiency-related emphysema, scleroderma, and sickle-cell disease. Moreover, we demonstrate that human iPSC generated with this approach have the ability to robustly differentiate into definitive endoderm in vitro, the developmental precursor tissue of lung epithelia.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Endodermo/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Vectores Genéticos/genética , Humanos , Lentivirus/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Am J Pathol ; 175(6): 2309-18, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19850887

RESUMEN

gamma-Glutamyl transferase (GGT) regulates glutathione metabolism and cysteine supply. GGT inactivation in GGT(enu1) mice limits cysteine availability causing cellular glutathione deficiency. In lung, the resultant oxidant burden is associated with increased nitric oxide (NO) production, yet GGT(enu1) mice still exhibit higher mortality in hyperoxia. We hypothesized that NO metabolism is altered under severe oxidant stress and contributes to lung cellular injury and death. We compared lung injury, NO synthase (NOS) expression, nitrate/nitrite production, nitroso product formation, peroxynitrite accumulation, and cell death in wild-type and GGT(enu1) mice in normoxia and hyperoxia. The role of NOS activity in cell death was determined by NOS inhibition. Exposure of wild-type mice to hyperoxia caused increased lung injury, altered NO metabolism, and induction of cell death compared with normoxia, which was attenuated by NOS inhibition. Each of these lung injury indices were magnified in hyperoxia-exposed GGT(enu1) mice except nitrosation, which showed a diminished decrease compared with wild-type mice. NOS inhibition attenuated cell death only slightly, likely due to further exacerbation of oxidant stress. Taken together, these data suggest that apoptosis in hyperoxia is partially NO-dependent and reiterate the importance of cellular glutathione in lung antioxidant defense. Therefore, reduced denitrosylation of proteins, possibly resulting in impaired cellular repair, and excessive apoptotic cell death likely contribute to increased lung injury and mortality of GGT(enu1) mice in hyperoxia.


Asunto(s)
Hiperoxia/metabolismo , Lesión Pulmonar/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/fisiología , gamma-Glutamiltransferasa/deficiencia , Animales , Apoptosis/fisiología , Western Blotting , Hiperoxia/complicaciones , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Lesión Pulmonar/etiología , Ratones , Óxido Nítrico Sintasa/metabolismo
5.
Stem Cell Reports ; 15(1): 242-255, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32619491

RESUMEN

Individuals with the genetic disorder alpha-1 antitrypsin deficiency (AATD) are at risk of developing lung and liver disease. Patient induced pluripotent stem cells (iPSCs) have been found to model features of AATD pathogenesis but only a handful of AATD patient iPSC lines have been published. To capture the significant phenotypic diversity of the patient population, we describe here the establishment and characterization of a curated repository of AATD iPSCs with associated disease-relevant clinical data. To highlight the utility of the repository, we selected a subset of iPSC lines for functional characterization. Selected lines were differentiated to generate both hepatic and lung cell lineages and analyzed by RNA sequencing. In addition, two iPSC lines were targeted using CRISPR/Cas9 editing to accomplish scarless repair. Repository iPSCs are available to investigators for studies of disease pathogenesis and therapeutic discovery.


Asunto(s)
Acceso a la Información , Bases de Datos como Asunto , Células Madre Pluripotentes Inducidas/patología , Deficiencia de alfa 1-Antitripsina/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Linaje de la Célula , Endodermo/patología , Femenino , Edición Génica , Sitios Genéticos , Genotipo , Hepatocitos/patología , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Fenotipo , Transcriptoma/genética , alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/diagnóstico por imagen , Deficiencia de alfa 1-Antitripsina/genética
6.
Am J Respir Cell Mol Biol ; 38(5): 509-16, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18063838

RESUMEN

GGT(enu1) mice, deficient in gamma-glutamyl transferase and unable to metabolize extracellular glutathione, develop intracellular glutathione deficiency and oxidant stress. We used intratracheal IL-13 to induce airway inflammation and asthma in wild-type (WT) and GGT(enu1) mice to determine the effect of altered glutathione metabolism on bronchial asthma. WT and GGT(enu1) mice developed similar degrees of lung inflammation. In contrast, IL-13 induced airway epithelial cell mucous cell hyperplasia, mucin and mucin-related gene expression, epidermal growth factor receptor mRNA, and epidermal growth factor receptor activation along with airway hyperreactivity in WT mice but not in GGT(enu1) mice. Lung lining fluid (extracellular) glutathione was 10-fold greater in GGT(enu1) than in WT lungs, providing increased buffering of inflammation-associated reactive oxygen species. Pharmacologic inhibition of GGT in WT mice produced similar effects, suggesting that the lung lining fluid glutathione protects against epithelial cell induction of asthma. Inhibiting GGT activity in lung lining fluid may represent a novel therapeutic approach for preventing and treating asthma.


Asunto(s)
Asma/inmunología , Asma/prevención & control , Líquido Extracelular/inmunología , Glutatión/fisiología , Interleucina-13/efectos adversos , Pulmón/metabolismo , Animales , Asma/enzimología , Asma/genética , Modelos Animales de Enfermedad , Glutatión/antagonistas & inhibidores , Glutatión/deficiencia , Glutatión/genética , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , gamma-Glutamiltransferasa/antagonistas & inhibidores , gamma-Glutamiltransferasa/deficiencia , gamma-Glutamiltransferasa/genética
7.
J Cell Biochem ; 103(6): 1886-94, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18022820

RESUMEN

Fgf10 has a prominent role in organogenesis. In the developing lung, Fgf10 is dynamically expressed in the distal mesenchyme from where it diffuses and activates its epithelial receptor, Fgfr2b, to trigger budding. Little is known about how Fgf10 expression is regulated. Here we have identified a mouse lung-specific mesenchymal cell line, MLg, which expresses endogenous Fgf10 and responds to known regulators of Fgf10 in a way that is reminiscent of the early lung. To gain insights into the mechanisms involved in the transcriptional regulation of Fgf10 in these cells, we have cloned and analyzed approximately a 4.5 kb region of the mouse Fgf10 promoter. Promoter deletion analysis and Luciferase reporter assays revealed an upstream region of the Fgf10 promoter with selective enhancer activity in the MLg, but not in the non-lung-derived cell line NIH3T3. Our data suggest that a potential lung mesenchyme-specific enhancer may exist within this region of the Fgf10 promoter.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/biosíntesis , Mesodermo/fisiología , Animales , Línea Celular , Elementos de Facilitación Genéticos , Factor 10 de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Pulmón/citología , Mesodermo/citología , Ratones , Regiones Promotoras Genéticas
8.
Front Pharmacol ; 5: 179, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25132819

RESUMEN

Asthma is characterized by airway inflammation. Inflammation is associated with oxidant stress. Airway epithelial cells are shielded from this stress by a thin layer of lung lining fluid (LLF) which contains an abundance of the antioxidant glutathione. LLF glutathione metabolism is regulated by γ-glutamyl transferase (GGT). Loss of LLF GGT activity in the mutant GGT(enu1) mouse causes an increase in baseline LLF glutathione content which is magnified in an IL-13 model of allergic airway inflammation and protective against asthma. Normal mice are susceptible to asthma in this model but can be protected with acivicin, a GGT inhibitor. GGT is a target to treat asthma but acivicin toxicity limits clinical use. GGsTop is a novel GGT inhibitor. GGsTop inhibits LLF GGT activity only when delivered through the airway. In the IL-13 model, mice treated with IL-13 and GGsTop exhibit a lung inflammatory response similar to that of mice treated with IL-13 alone. But mice treated with IL-13 and GGsTop show attenuation of methacholine-stimulated airway hyper-reactivity, inhibition of Muc5ac and Muc5b gene induction, decreased airway epithelial cell mucous accumulation and a fourfold increase in LLF glutathione content compared to mice treated with IL-13 alone. Mice treated with GGsTop alone are no different from that of mice treated with saline alone, and show no signs of toxicity. GGsTop could represent a valuable pharmacological tool to inhibit LLF GGT activity in pulmonary disease models. The associated increase in LLF glutathione can protect lung airway epithelial cells against oxidant injury associated with inflammation in asthma.

9.
PLoS One ; 8(1): e54806, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23372771

RESUMEN

The fluid-filled lung exists in relative hypoxia in utero (∼25 mm Hg), but at birth fills with ambient air where the partial pressure of oxygen is ∼150 mm Hg. The impact of this change was studied in mouse lung with microarrays to analyze gene expression one day before, and 2, 6, 12 and 24 hours after birth into room air or 10% O(2). The expression levels of >150 genes, representing transcriptional regulation, structure, apoptosis and antioxidants were altered 2 hrs after birth in room air but blunted or absent with birth in 10% O(2). Kruppel-like factor 4 (Klf4), a regulator of cell growth arrest and differentiation, was the most significantly altered lung gene at birth. Its protein product was expressed in fibroblasts and airway epithelial cells. Klf4 mRNA was induced in lung fibroblasts exposed to hyperoxia and constitutive expression of Klf4 mRNA in Klf4-null fibroblasts induced mRNAs for p21(cip1/Waf1), smooth muscle actin, type 1 collagen, fibronectin and tenascin C. In Klf4 perinatal null lung, p21(cip1/Waf1)mRNA expression was deficient prior to birth and associated with ongoing cell proliferation after birth; connective tissue gene expression was deficient around birth and smooth muscle actin protein expression was absent from myofibroblasts at tips of developing alveoli; p53, p21(cip1/Waf1) and caspase-3 protein expression were widespread at birth suggesting excess apoptosis compared to normal lung. We propose that the changing oxygen environment at birth acts as a physiologic signal to induce lung Klf4 mRNA expression, which then regulates proliferation and apoptosis in fibroblasts and airway epithelial cells, and connective tissue gene expression and myofibroblast differentiation at the tips of developing alveoli.


Asunto(s)
Diferenciación Celular/genética , Fibroblastos/citología , Factores de Transcripción de Tipo Kruppel/genética , Pulmón/metabolismo , Miofibroblastos/citología , Oxígeno/metabolismo , Animales , Apoptosis/genética , Proliferación Celular , Análisis por Conglomerados , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Embarazo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
J Gen Physiol ; 141(1): 61-72, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23277474

RESUMEN

Understanding the basis for differential responses to drug therapies remains a challenge despite advances in genetics and genomics. Induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to investigate the pharmacology of disease processes in therapeutically and genetically relevant primary cell types in vitro and to interweave clinical and basic molecular data. We report here the derivation of iPSCs from a long QT syndrome patient with complex genetics. The proband was found to have a de novo SCN5A LQT-3 mutation (F1473C) and a polymorphism (K897T) in KCNH2, the gene for LQT-2. Analysis of the biophysics and molecular pharmacology of ion channels expressed in cardiomyocytes (CMs) differentiated from these iPSCs (iPSC-CMs) demonstrates a primary LQT-3 (Na(+) channel) defect responsible for the arrhythmias not influenced by the KCNH2 polymorphism. The F1473C mutation occurs in the channel inactivation gate and enhances late Na(+) channel current (I(NaL)) that is carried by channels that fail to inactivate completely and conduct increased inward current during prolonged depolarization, resulting in delayed repolarization, a prolonged QT interval, and increased risk of fatal arrhythmia. We find a very pronounced rate dependence of I(NaL) such that increasing the pacing rate markedly reduces I(NaL) and, in addition, increases its inhibition by the Na(+) channel blocker mexiletine. These rate-dependent properties and drug interactions, unique to the proband's iPSC-CMs, correlate with improved management of arrhythmias in the patient and provide support for this approach in developing patient-specific clinical regimens.


Asunto(s)
Antiarrítmicos/uso terapéutico , Canales de Potasio Éter-A-Go-Go/genética , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Células Madre Pluripotentes/fisiología , Antiarrítmicos/farmacología , Fenómenos Biofísicos , Comunicación Celular , Células Cultivadas , Canal de Potasio ERG1 , Flecainida/farmacología , Flecainida/uso terapéutico , Humanos , Recién Nacido , Síndrome de QT Prolongado/patología , Masculino , Mexiletine/farmacología , Mexiletine/uso terapéutico , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Farmacogenética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Canales de Sodio/fisiología , Resultado del Tratamiento
12.
Am J Physiol Lung Cell Mol Physiol ; 291(5): L950-6, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16798780

RESUMEN

Aldolase C (EC 4.1.2.13) is a brain-specific aldolase isoform and a putative target of the transcription factor hypoxia-inducible factor (HIF)-1. We identified aldolase C as a candidate hypoxia-regulated gene in mouse lung epithelial (MLE) cells using differential display. We show that the message accumulates in a robust fashion when MLE cells are exposed to 1% oxygen and is inversely related to oxygen content. Induction in hypoxia is dependent on protein synthesis. We localized a hypoxia-responsive element (HRE) in the aldolase C promoter using a series of deletion and heterologous expression studies. The HRE overlaps with a region of the proximal aldolase C promoter that is also related to its brain-specific expression. The HRE contains an Arnt (HIF-1beta) and an HIF-1alpha site. We show that induction in hypoxia is dependent on the HIF-1 site and that HIF-1alpha protein is present, by gel-shift assay, within nuclear complexes of MLE cells in hypoxia. Aldolase C mRNA expression is developmentally regulated in the fetal lung, rapidly downregulated in the newborn lung at birth, and inducible in the adult lung when exposed to hypoxia. This pattern of regulation is not seen in the brain. This preservation of this HRE in the promoters of four other species suggests that aldolase C may function as a stress-response gene.


Asunto(s)
Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Mucosa Respiratoria/enzimología , Animales , Secuencia de Bases , Encéfalo/enzimología , Línea Celular , Ensayo de Cambio de Movilidad Electroforética , Inducción Enzimática/fisiología , Femenino , Regulación Enzimológica de la Expresión Génica/fisiología , Hipoxia/fisiopatología , Pulmón/enzimología , Ratones , Mutagénesis/fisiología , Embarazo , Regiones Promotoras Genéticas/genética , ARN Mensajero/metabolismo , Mucosa Respiratoria/citología
13.
Am J Physiol Cell Physiol ; 291(6): C1412-21, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16837650

RESUMEN

Fibulin-5 (FBLN5), an extracellular matrix glycoprotein required for normal elastogenesis, is coordinately expressed with elastin during lung injury and repair. We found that treatment with transforming growth factor-beta (TGF-beta) induced a rapid but transient increase in FBLN5 heterogeneous nuclear RNA (hnRNA) followed by a sustained increased in the steady-state level of FBLN5 mRNA. The transcription start site of the human FBLN5 gene was localized at 221 nucleotides upstream of the translation start site by using primer extension, Northern blots, and functional analysis of transcriptional activity in reporter plasmids containing 5'-flanking regions. TGF-beta markedly increased FBLN5 promoter activity in transient transfection assays. Two putative Smad-binding sites were identified within the proximal promoter and are required for this TGF-beta induction. Electrophoretic gel mobility shift assay revealed that TGF-beta strongly increased binding of Smad2 and Smad3 nuclear complexes to the proximal FBLN5 promoter and induced a Smad2/3-dependent binding of slow migrating nuclear protein complex. FBLN5 mRNA induction by TGF-beta was blocked by pretreatment with TGF-beta receptor inhibitor SB-431542, the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY-294002, and actinomycin D. Basal and TGF-beta-induced FBLN5 hnRNA and mRNA were strongly and proportionally decreased by LY-294002, as was TGF-beta-induced phosphorylation of Akt, but not Smad3, as measured by Western blot analysis. In addition, LY-294002 markedly and proportionally decreased FBLN5 promoter activity in transient transfection analyses with TGF-beta-treated or untreated lung fibroblasts. These studies demonstrate that induction of FBLN5 gene expression in lung fibroblasts is mediated via canonical TGF-beta/Smad signaling and requires the PI3-kinase/Akt pathway.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Pulmón/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Secuencia de Bases , Células Cultivadas , Inhibidores Enzimáticos/metabolismo , Proteínas de la Matriz Extracelular/genética , Fibroblastos/citología , Humanos , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN/metabolismo , Transducción de Señal/fisiología , Proteínas Smad/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 282(1): L75-82, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11741818

RESUMEN

We identified rat developing arteries and neural crest derivatives with multiple epidermal growth factor-like domains (DANCE) as a developmentally regulated gene using suppression-subtractive hybridization. Northern analysis confirmed a fivefold induction of this mRNA transcript between fetal day 18 and 20 that persisted through postnatal day 17. The level was declining at postnatal day 21 and was similar in adult lung to that at fetal day 18. In adults DANCE mRNA abundance was highest in lung, kidney, and spleen, lower in heart, skeletal muscle, and brain, but absent from liver and thymus. It was abundant in pulmonary artery endothelium and a lung epithelial type 2 cell line, barely detectable in vascular smooth muscle, and absent in fibroblasts. In situ hybridization revealed a regulated pattern of expression in endothelial cells of fetal, postnatal, and adult lung. Because DANCE mRNA was inducible in systemic arteries during recovery from injury, we searched for induction in lung injured by hyperoxia. Mouse DANCE mRNA abundance was unchanged during an acute 3-day exposure period, induced threefold 5 days into the recovery phase, and returned to baseline at days 8, 11, and 14. In situ hybridization at day 5 suggested a diffuse pattern of induction. DANCE may play a role in lung endothelial cell biology during development repair after injury.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/metabolismo , Proteínas de la Matriz Extracelular , Hiperoxia/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Proteínas Recombinantes/metabolismo , Envejecimiento/metabolismo , Animales , Femenino , Feto/metabolismo , Humanos , Hiperoxia/patología , Hibridación in Situ , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Ratones , Datos de Secuencia Molecular , Oxígeno/farmacología , ARN Mensajero/metabolismo , Ratas , Proteínas Recombinantes/genética , Distribución Tisular
15.
Am J Physiol Lung Cell Mol Physiol ; 285(5): L1147-52, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12909585

RESUMEN

Fibulin-5, previously known as DANCE and EVEC, is a secreted extracellular matrix protein that functions as a scaffold for elastin fiber assembly and as a ligand for integrins alphavbeta3, alphavbeta5, and alpha9beta1. Fibulin-5 is developmentally regulated in the lung, and lung air space enlargement develops in mice deficient in fibulin-5. Fibulin-5 is also induced in adult lung following lung injury by hyperoxia. To further examine the role of fibulin-5 during repair of lung injury, we assessed fibulin-5 expression during elastase-induced emphysema in C57/b mice. Mice were treated with either saline or elastase via the trachea, and the lung was examined 20 days after treatment. Fibulin-5 mRNA was induced almost fourfold, whereas elastin mRNA was minimally elevated. Immunohistochemistry studies showed that fibulin-5 was induced in cells within the alveolar wall following elastase treatment. Western analysis demonstrates that fibulin-5 was strongly expressed in isolated primary lung interstitial fibroblasts. Fibulin-5 protein was localized to the fibroblast cell layer in culture, and brief elastase treatment degraded the protein. Intact fibulin-5 did not accumulate in the culture media. Treatment of fibroblasts with the proinflammatory cytokine interleukin-1beta abolished fibulin-5 mRNA expression. Our results indicate that fibulin-5 is coordinately expressed and regulated with elastin in lung fibroblasts and may serve a key role during lung injury and repair.


Asunto(s)
Elastina/genética , Proteínas de la Matriz Extracelular/genética , Regulación de la Expresión Génica , Lesión Pulmonar , Proteínas Recombinantes/genética , Transcripción Genética/genética , Secuencia de Aminoácidos , Animales , Células Cultivadas , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/deficiencia , Fibroblastos/citología , Fibroblastos/fisiología , Hiperoxia , Integrinas/fisiología , Ligandos , Pulmón/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Elastasa Pancreática/toxicidad , Fragmentos de Péptidos/química , ARN Mensajero/genética , Ratas , Proteínas Recombinantes/química
16.
Am J Physiol Lung Cell Mol Physiol ; 283(4): L766-76, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12225953

RESUMEN

gamma-Glutamyl transferase (GGT) is critical to glutathione homeostasis by providing substrates for glutathione synthesis. We hypothesized that loss of GGT would cause oxidant stress in the lung. We compared the lungs of GGT(enu1) mice, a genetic model of GGT deficiency, with normal mice in normoxia to study this hypothesis. We found GGT promoter 3 (P3) alone expressed in normal lung but GGT P3 plus P1, an oxidant-inducible GGT promoter, in GGT(enu1) lung. Glutathione content was barely decreased in GGT(enu1) lung homogenate and elevated nearly twofold in epithelial lining fluid, but the fraction of oxidized glutathione was increased three- and fourfold, respectively. Glutathione content in GGT(enu1) alveolar macrophages was decreased nearly sixfold, and the oxidized glutathione fraction was increased sevenfold. Immunohistochemical studies showed glutathione deficiency together with an intense signal for 3-nitrotyrosine in nonciliated bronchiolar epithelial (Clara) cells and expression of heme oxygenase-1 in the vasculature only in GGT(enu1) lung. When GGT(enu1) mice were exposed to hyperoxia, survival was decreased by 25% from control because of accelerated formation of vascular pulmonary edema, widespread oxidant stress in the epithelium, diffuse depletion of glutathione, and severe bronchiolar cellular injury. These data indicate a critical role for GGT in lung glutathione homeostasis and antioxidant defense in normoxia and hyperoxia.


Asunto(s)
Enfermedades Pulmonares/enzimología , Pulmón/metabolismo , Estrés Oxidativo/fisiología , Oxígeno/metabolismo , Tirosina/análogos & derivados , gamma-Glutamiltransferasa/genética , Animales , Especificidad de Anticuerpos , Femenino , Glutatión/análisis , Glutatión/inmunología , Glutatión/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1 , Hiperoxia/metabolismo , Pulmón/química , Pulmón/patología , Enfermedades Pulmonares/mortalidad , Enfermedades Pulmonares/patología , Masculino , Proteínas de la Membrana , Ratones , Ratones Mutantes , Oxígeno/farmacología , ARN Mensajero/genética , Tasa de Supervivencia , Tirosina/análisis , Tirosina/inmunología , Tirosina/metabolismo , gamma-Glutamiltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA