Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 687: 720-731, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31412475

RESUMEN

A computational system consisting of an urban mobility simulator, validated fluid dynamics and an integral exposure model, is proposed to obtain cyclist and pedestrian exposure to PMx and NOx. Pedestrian activities in the urban anthroposphere include walking and running. The computational experiments take place in a computer-generated urban canyon, subject to emissions from diesel and gasoline Euro 5 and Euro 6 vehicular technologies, in continuous and stop-and-go traffic scenarios, and three wind directions at two speeds. The exposure time in the computational domain of slow and fast pedestrians were obtained. Slow pedestrians had exposure times around 17% more than fast pedestrians due to their higher sidewalk residence time. Runners and cyclists decreased their exposures by 57% and 73% respectively compared with walkers. Two traffic scenarios are implemented: one due the presence of a hump and another without a hump. The presence of the hump, increased exposure and fuel consumption by 60% per heavy duty vehicle, about 44-48% per light duty vehicle and about 54-71% per passenger car. Vehicular technology had a large influence on exposure: Heavy duty-Euro 6 vehicle decreased 86% the exposure to PM2.5 and 66% to NOX with respect to Euro 5. The proposed computational system provides information on how wind velocity influenced the inhomogeneous pollutant distribution in the street-canyon, causing exposure to be dependent on pedestrian route location. Microscale sidewalk areas in the order of meters containing higher concentrations were thus located. The cleanest routes in the urban canyon were identified. When the wind intensity doubled from 2 to 4 m s-1, exposure concentration decreased around 45%. The proposed system provides a computational platform to study urban atmospheric fluids, scenarios such as pedestrian routes, vehicular technologies, traffic velocities, meteorological conditions and urban morphology affecting pollution exposure.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Emisiones de Vehículos/análisis , Exposición a Riesgos Ambientales/análisis , Humanos , Hidrodinámica , Peatones
2.
Environ Pollut ; 225: 587-597, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28336097

RESUMEN

Air pollution continues to be a problem in the urban environment. A range of different pollutant mitigation strategies that promote dispersion and deposition exist, but there is little evidence with respect to their comparative performance from both an environmental and economic perspective. This paper focuses on examining different NO2 mitigation strategies such as trees, buildings facades coated with photocatalytic paint and solid barriers in Oxford Street in London. The case study findings will support ranking the environmental and economic impacts of these different strategies to improve personal exposure conditions on the footpath and on the road in a real urban street canyon. CFD simulations of airflow and NO2 dispersion in Oxford Street in London were undertaken using the OpenFOAM software platform with the k-ε model, taking into account local prevailing wind conditions. Trees are shown to be the most cost-effective strategy, with a small reduction in NO2 concentrations of up to 0.7% on the road. However, solid barriers with and without the application of photocatalytic paint and an innovative material (20 times more expensive than trees) can improve air quality on the footpaths more substantially, up to 7.4%, yet this has a significant detrimental impact on NO2 concentrations (≤23.8%) on the road. Photocatalytic paint on building surfaces presented a minimal environmental reductions (1.2%) and economic (>100 times more expensive than trees) mitigation strategy. The findings recognised the differences between footpath and road concentrations occurred and that a focused examination of three pollution hotspots can provide more cost effective pollution mitigation. This study considers how a number of pollutant mitigation measures can be applied in a single street canyon and demonstrates the strengths and weaknesses of these strategies from economic and environmental perspectives. Further research is required to extrapolate the findings presented here to different street geometries.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Política Ambiental , Modelos Teóricos , Dióxido de Nitrógeno/análisis , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Ambiente , Monitoreo del Ambiente/métodos , Londres , Modelos Económicos , Estudios Prospectivos , Árboles , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA