Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Development ; 147(5)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32098763

RESUMEN

17ß-Estradiol induces the postnatal development of mammary gland and influences breast carcinogenesis by binding to the estrogen receptor ERα. ERα acts as a transcription factor but also elicits rapid signaling through a fraction of ERα expressed at the membrane. Here, we have used the C451A-ERα mouse model mutated for the palmitoylation site to understand how ERα membrane signaling affects mammary gland development. Although the overall structure of physiological mammary gland development is slightly affected, both epithelial fragments and basal cells isolated from C451A-ERα mammary glands failed to grow when engrafted into cleared wild-type fat pads, even in pregnant hosts. Similarly, basal cells purified from hormone-stimulated ovariectomized C451A-ERα mice did not produce normal outgrowths. Ex vivo, C451A-ERα basal cells displayed reduced matrix degradation capacities, suggesting altered migration properties. More importantly, C451A-ERα basal cells recovered in vivo repopulating ability when co-transplanted with wild-type luminal cells and specifically with ERα-positive luminal cells. Transcriptional profiling identified crucial paracrine luminal-to-basal signals. Altogether, our findings uncover an important role for membrane ERα expression in promoting intercellular communications that are essential for mammary gland development.


Asunto(s)
Epitelio/metabolismo , Receptor alfa de Estrógeno/biosíntesis , Glándulas Mamarias Animales/embriología , Comunicación Paracrina/fisiología , Animales , Células Epiteliales/metabolismo , Células Epiteliales/trasplante , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Lipoilación/fisiología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/trasplante , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
2.
J Pathol ; 247(1): 60-71, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30206932

RESUMEN

The cell cycle inhibitor p27Kip1 is a tumor suppressor via the inhibition of CDK complexes in the nucleus. However, p27 also plays other functions in the cell and may acquire oncogenic roles when located in the cytoplasm. Activation of oncogenic pathways such as Ras or PI3K/AKT causes the relocalization of p27 in the cytoplasm, where it can promote tumorigenesis by unclear mechanisms. Here, we investigated how cytoplasmic p27 participates in the development of non-small cell lung carcinomas. We provide molecular and genetic evidence that the oncogenic role of p27 is mediated, at least in part, by binding to and inhibiting the GTPase RhoB, which normally acts as a tumor suppressor in the lung. Genetically modified mice revealed that RhoB expression is preferentially lost in tumors in which p27 is absent and maintained in tumors expressing wild-type p27 or p27CK- , a mutant that cannot inhibit CDKs. Moreover, although the absence of RhoB promoted tumorigenesis in p27-/- animals, it had no effect in p27CK- knock-in mice, suggesting that cytoplasmic p27 may act as an oncogene, at least in part, by inhibiting the activity of RhoB. Finally, in a cohort of lung cancer patients, we identified a subset of tumors harboring cytoplasmic p27 in which RhoB expression is maintained and these characteristics were strongly associated with decreased patient survival. Thus, monitoring p27 localization and RhoB levels in non-small cell lung carcinoma patients appears to be a powerful prognostic marker for these tumors. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Adenocarcinoma del Pulmón/enzimología , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Citoplasma/enzimología , Neoplasias Pulmonares/enzimología , Proteína de Unión al GTP rhoB/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Carcinogénesis , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Citoplasma/genética , Citoplasma/patología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Unión Proteica , Transducción de Señal , Proteína de Unión al GTP rhoB/genética
3.
J Pathol ; 239(3): 250-61, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27015986

RESUMEN

CDKN1C encodes the cyclin-CDK inhibitor p57(Kip2) (p57), a negative regulator of the cell cycle and putative tumour suppressor. Genetic and epigenetic alterations causing loss of p57 function are the most frequent cause of Beckwith-Wiedemann syndrome (BWS), a genetic disorder characterized by multiple developmental anomalies and increased susceptibility to tumour development during childhood. So far, BWS development has been attributed entirely to the deregulation of proliferation caused by loss of p57-mediated CDK inhibition. However, a fraction of BWS patients have point mutations in CDKN1C located outside of the CDK inhibitory region, suggesting the involvement of other parts of the protein in the disease. To test this possibility, we generated knock-in mice deficient for p57-mediated cyclin-CDK inhibition (p57(CK) (-) ), the only clearly defined function of p57. Comparative analysis of p57(CK) (-) and p57(KO) mice provided clear evidence for CDK-independent roles of p57 and revealed that BWS is not caused entirely by CDK deregulation, as several features of BWS are caused by the loss of CDK-independent roles of p57. Thus, while the genetic origin of BWS is well understood, our results underscore that the underlying molecular mechanisms remain largely unclear. To probe these mechanisms further, we determined the p57 interactome. Several partners identified are involved in genetic disorders with features resembling those caused by CDKN1C mutation, suggesting that they could be involved in BWS pathogenesis and revealing a possible connection between seemingly distinct syndromes. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Regulación de la Expresión Génica/genética , Proteínas Supresoras de Tumor/genética , Secuencia de Aminoácidos , Animales , Síndrome de Beckwith-Wiedemann/patología , Ciclo Celular , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Fenotipo , Alineación de Secuencia , Proteínas Supresoras de Tumor/metabolismo
4.
Cells ; 10(3)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802060

RESUMEN

Glioblastoma is characterized by extensive necrotic areas with surrounding hypoxia. The cancer cell response to hypoxia in these areas is well-described; it involves a metabolic shift and an increase in stem cell-like characteristics. Less is known about the hypoxic response of tumor-associated astrocytes, a major component of the glioma tumor microenvironment. Here, we used primary human astrocytes and a genetically engineered glioma mouse model to investigate the response of this stromal cell type to hypoxia. We found that astrocytes became reactive in response to intermediate and severe hypoxia, similarly to irradiated and temozolomide-treated astrocytes. Hypoxic astrocytes displayed a potent hypoxia response that appeared to be driven primarily by hypoxia-inducible factor 2-alpha (HIF-2α). This response involved the activation of classical HIF target genes and the increased production of hypoxia-associated cytokines such as TGF-ß1, IL-3, angiogenin, VEGF-A, and IL-1 alpha. In vivo, astrocytes were present in proximity to perinecrotic areas surrounding HIF-2α expressing cells, suggesting that hypoxic astrocytes contribute to the glioma microenvironment. Extracellular matrix derived from hypoxic astrocytes increased the proliferation and drug efflux capability of glioma cells. Together, our findings suggest that hypoxic astrocytes are implicated in tumor growth and potentially stemness maintenance by remodeling the tumor microenvironment.


Asunto(s)
Astrocitos/metabolismo , Glioma/fisiopatología , Animales , Hipoxia de la Célula , Humanos , Ratones , Microambiente Tumoral
5.
Cell Death Dis ; 12(5): 481, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986251

RESUMEN

The cyclin-dependent kinase inhibitor p27Kip1 (p27) has been involved in promoting autophagy and survival in conditions of metabolic stress. While the signaling cascade upstream of p27 leading to its cytoplasmic localization and autophagy induction has been extensively studied, how p27 stimulates the autophagic process remains unclear. Here, we investigated the mechanism by which p27 promotes autophagy upon glucose deprivation. Mouse embryo fibroblasts (MEFs) lacking p27 exhibit a decreased autophagy flux compared to wild-type cells and this is correlated with an abnormal distribution of autophagosomes. Indeed, while autophagosomes are mainly located in the perinuclear area in wild-type cells, they are distributed throughout the cytoplasm in p27-null MEFs. Autophagosome trafficking towards the perinuclear area, where most lysosomes reside, is critical for autophagosome-lysosome fusion and cargo degradation. Vesicle trafficking is mediated by motor proteins, themselves recruited preferentially to acetylated microtubules, and autophagy flux is directly correlated to microtubule acetylation levels. p27-/- MEFs exhibit a marked reduction in microtubule acetylation levels and restoring microtubule acetylation in these cells, either by re-expressing p27 or with deacetylase inhibitors, restores perinuclear positioning of autophagosomes and autophagy flux. Finally, we find that p27 promotes microtubule acetylation by binding to and stabilizing α-tubulin acetyltransferase (ATAT1) in glucose-deprived cells. ATAT1 knockdown results in random distribution of autophagosomes in p27+/+ MEFs and impaired autophagy flux, similar to that observed in p27-/- cells. Overall, in response to glucose starvation, p27 promotes autophagy by facilitating autophagosome trafficking along microtubule tracks by maintaining elevated microtubule acetylation via an ATAT1-dependent mechanism.


Asunto(s)
Acetiltransferasas/metabolismo , Autofagia/fisiología , Proteínas de Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Acetilación , Animales , Humanos , Ratones , Transducción de Señal
6.
Cancer Res ; 81(8): 2101-2115, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33483373

RESUMEN

The tumor microenvironment plays an essential role in supporting glioma stemness and radioresistance. Following radiotherapy, recurrent gliomas form in an irradiated microenvironment. Here we report that astrocytes, when pre-irradiated, increase stemness and survival of cocultured glioma cells. Tumor-naïve brains increased reactive astrocytes in response to radiation, and mice subjected to radiation prior to implantation of glioma cells developed more aggressive tumors. Extracellular matrix derived from irradiated astrocytes were found to be a major driver of this phenotype and astrocyte-derived transglutaminase 2 (TGM2) was identified as a promoter of glioma stemness and radioresistance. TGM2 levels increased after radiation in vivo and in recurrent human glioma, and TGM2 inhibitors abrogated glioma stemness and survival. These data suggest that irradiation of the brain results in the formation of a tumor-supportive microenvironment. Therapeutic targeting of radiation-induced, astrocyte-derived extracellular matrix proteins may enhance the efficacy of standard-of-care radiotherapy by reducing stemness in glioma. SIGNIFICANCE: These findings presented here indicate that radiotherapy can result in a tumor-supportive microenvironment, the targeting of which may be necessary to overcome tumor cell therapeutic resistance and recurrence. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2101/F1.large.jpg.


Asunto(s)
Astrocitos/enzimología , Neoplasias Encefálicas/radioterapia , Encéfalo/efectos de la radiación , Proteínas de Unión al GTP/metabolismo , Glioblastoma/radioterapia , Células Madre Neoplásicas , Transglutaminasas/metabolismo , Microambiente Tumoral/efectos de la radiación , Animales , Astrocitos/efectos de la radiación , Encéfalo/citología , Encéfalo/fisiología , Neoplasias Encefálicas/patología , Supervivencia Celular/fisiología , Inhibidores Enzimáticos/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de la radiación , Femenino , Proteínas de Unión al GTP/antagonistas & inhibidores , Glioblastoma/patología , Glioma/patología , Glioma/radioterapia , Humanos , Masculino , Ratones , Recurrencia Local de Neoplasia/enzimología , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/fisiología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Tolerancia a Radiación , Transglutaminasas/antagonistas & inhibidores , Microambiente Tumoral/fisiología
7.
Small GTPases ; 11(4): 256-270, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-29172953

RESUMEN

Actin remodeling plays an essential role in diverse cellular processes such as cell motility, vesicle trafficking or cytokinesis. The scaffold protein and actin nucleation promoting factor Cortactin is present in virtually all actin-based structures, participating in the formation of branched actin networks. It has been involved in the control of endocytosis, and vesicle trafficking, axon guidance and organization, as well as adhesion, migration and invasion. To migrate and invade through three-dimensional environments, cells have developed specialized actin-based structures called invadosomes, a generic term to designate invadopodia and podosomes. Cortactin has emerged as a critical regulator of invadosome formation, function and disassembly. Underscoring this role, Cortactin is frequently overexpressed in several types of invasive cancers. Herein we will review the roles played by Cortactin in these specific invasive structures.


Asunto(s)
Cortactina/metabolismo , Podosomas/metabolismo , Animales , Cortactina/química , Humanos , Podosomas/química
8.
Neoplasia ; 22(12): 689-701, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33142235

RESUMEN

Tumor cell behaviors associated with aggressive tumor growth such as proliferation, therapeutic resistance, and stem cell characteristics are regulated in part by soluble factors derived from the tumor microenvironment. Tumor-associated astrocytes represent a major component of the glioma tumor microenvironment, and astrocytes have an active role in maintenance of normal neural stem cells in the stem cell niche, in part via secretion of soluble delta-like noncanonical Notch ligand 1 (DLK1). We found that astrocytes, when exposed to stresses of the tumor microenvironment such as hypoxia or ionizing radiation, increased secretion of soluble DLK1. Tumor-associated astrocytes in a glioma mouse model expressed DLK1 in perinecrotic and perivascular tumor areas. Glioma cells exposed to recombinant DLK1 displayed increased proliferation, enhanced self-renewal and colony formation abilities, and increased levels of stem cell marker genes. Mechanistically, DLK1-mediated effects on glioma cells involved increased and prolonged stabilization of hypoxia-inducible factor 2alpha, and inhibition of hypoxia-inducible factor 2alpha activity abolished effects of DLK1 in hypoxia. Forced expression of soluble DLK1 resulted in more aggressive tumor growth and shortened survival in a genetically engineered mouse model of glioma. Together, our data support DLK1 as a soluble mediator of glioma aggressiveness derived from the tumor microenvironment.


Asunto(s)
Biomarcadores de Tumor , Proteínas de Unión al Calcio/metabolismo , Glioma/metabolismo , Microambiente Tumoral , Animales , Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al Calcio/genética , Proliferación Celular , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Hipoxia , Ratones , Ratones Noqueados , Carga Tumoral
9.
Nat Cell Biol ; 22(9): 1076-1090, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807902

RESUMEN

Autophagy is a catabolic process whereby cytoplasmic components are degraded within lysosomes, allowing cells to maintain energy homeostasis during nutrient depletion. Several studies reported that the CDK inhibitor p27Kip1 promotes starvation-induced autophagy by an unknown mechanism. Here we find that p27 controls autophagy via an mTORC1-dependent mechanism in amino acid-deprived cells. During prolonged starvation, a fraction of p27 is recruited to lysosomes, where it interacts with LAMTOR1, a component of the Ragulator complex required for mTORC1 activation. Binding of p27 to LAMTOR1 prevents Ragulator assembly and mTORC1 activation, promoting autophagy. Conversely, p27-/- cells exhibit elevated mTORC1 signalling as well as impaired lysosomal activity and autophagy. This is associated with cytoplasmic sequestration of TFEB, preventing induction of the lysosomal genes required for lysosome function. LAMTOR1 silencing or mTOR inhibition restores autophagy and induces apoptosis in p27-/- cells. Together, these results reveal a direct coordinated regulation between the cell cycle and cell growth machineries.


Asunto(s)
Aminoácidos/metabolismo , Autofagia/fisiología , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Lisosomas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Inanición/metabolismo
10.
Elife ; 62017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28287395

RESUMEN

p27Kip1 (p27) is a cyclin-CDK inhibitor and negative regulator of cell proliferation. p27 also controls other cellular processes including migration and cytoplasmic p27 can act as an oncogene. Furthermore, cytoplasmic p27 promotes invasion and metastasis, in part by promoting epithelial to mesenchymal transition. Herein, we find that p27 promotes cell invasion by binding to and regulating the activity of Cortactin, a critical regulator of invadopodia formation. p27 localizes to invadopodia and limits their number and activity. p27 promotes the interaction of Cortactin with PAK1. In turn, PAK1 promotes invadopodia turnover by phosphorylating Cortactin, and expression of Cortactin mutants for PAK-targeted sites abolishes p27's effect on invadopodia dynamics. Thus, in absence of p27, cells exhibit increased invadopodia stability due to impaired PAK1-Cortactin interaction, but their invasive capacity is reduced compared to wild-type cells. Overall, we find that p27 directly promotes cell invasion by facilitating invadopodia turnover via the Rac1/PAK1/Cortactin pathway.


Asunto(s)
Cortactina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Podosomas/metabolismo , Quinasas p21 Activadas/metabolismo , Animales , Línea Celular , Movimiento Celular , Humanos , Ratones
12.
Oncotarget ; 6(34): 35880-92, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26416424

RESUMEN

p27Kip1 (p27) is a negative regulator of proliferation and a tumor suppressor via the inhibition of cyclin-CDK activity in the nucleus. p27 is also involved in the regulation of other cellular processes, including transcription by acting as a transcriptional co-repressor. Loss of p27 expression is frequently observed in pancreatic adenocarcinomas in human and is associated with decreased patient survival. Similarly, in a mouse model of K-Ras-driven pancreatic cancer, loss of p27 accelerates tumor development and shortens survival, suggesting an important role for p27 in pancreatic tumorigenesis. Here, we sought to determine how p27 might contribute to early events leading to tumor development in the pancreas. We found that K-Ras activation in the pancreas causes p27 mislocalization at pre-neoplastic stages. Moreover, loss of p27 or expression of a mutant p27 that does not bind cyclin-CDKs causes the mislocalization of several acinar polarity markers associated with metaplasia and induces the nuclear expression of Sox9 and Pdx1 two transcription factors involved in acinar-to-ductal metaplasia. Finally, we found that p27 directly represses transcription of Sox9, but not that of Pdx1. Thus, our results suggest that K-Ras activation, the earliest known event in pancreatic carcinogenesis, may cause loss of nuclear p27 expression which results in derepression of Sox9, triggering reprogramming of acinar cells and metaplasia.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/deficiencia , Páncreas/metabolismo , Páncreas/patología , Factor de Transcripción SOX9/biosíntesis , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HEK293 , Células HeLa , Humanos , Metaplasia , Ratones , Ratones Noqueados , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal
13.
Mol Oncol ; 8(7): 1181-95, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24768038

RESUMEN

Sphingosine 1-phosphate (S1P) plays important roles in cell proliferation, differentiation or survival mainly through its surface G-protein-coupled receptors S1P1-5. Bone represents the major site of metastasis for prostate cancer (CaP) cells, which rely on bone-derived factors to support their proliferation and resistance to therapeutics. In the present work we have found that conditioned medium (CM) from the MC3T3 osteoblastic cell line or primary murine and human osteoblast-like cells, as well as co-culture with MC3T3 stimulate proliferation of CaP lines in S1P-dependent manner. In addition, osteoblastic-derived S1P induces resistance of CaP cells to therapeutics including chemotherapy and radiotherapy. When S1P release from osteoblastic cells is decreased (inhibition of SphK1, knock-down of SphK1 or the S1P transporter, Spns2 by siRNA) or secreted S1P neutralized with anti-S1P antibody, the proliferative and survival effects of osteoblasts on CaP cells are abolished. Because of the paracrine nature of the signaling, we studied the role of the S1P receptors expressed on CaP cells in the communication with S1P secreted by osteoblasts. Strategies aimed at down-regulating S1P1, S1P2 or S1P3 (siRNA, antagonists), established the exclusive role of the S1P/S1P1 signaling between osteoblasts and CaP cells. Bone metastases from CaP are associated with osteoblastic differentiation resulting in abnormal bone formation. We show that the autocrine S1P/S1P3 signaling is central during differentiation to mature osteoblasts by regulating Runx2 level, a key transcription factor involved in osteoblastic maturation. Importantly, differentiated osteoblasts exhibited enhanced secretion of S1P and further stimulated CaP cell proliferation in a S1P-dependent manner. By establishing the dual role of osteoblast-borne S1P on both osteoblastic differentiation and CaP cell proliferation and survival, we uncover the importance of S1P in the bone metastatic microenvironment, which may open a novel area of study for the treatment of CaP bone metastasis by targeting S1P.


Asunto(s)
Neoplasias Óseas/secundario , Lisofosfolípidos/metabolismo , Osteoblastos/patología , Próstata/patología , Neoplasias de la Próstata/patología , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/terapia , Diferenciación Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Resistencia a Antineoplásicos , Humanos , Masculino , Ratones , Osteoblastos/citología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia , Transducción de Señal , Esfingosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA