Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 144(19): 3547-3561, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28827394

RESUMEN

Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Fosfoproteínas/metabolismo , Sistema Respiratorio/embriología , Sistema Respiratorio/metabolismo , Animales , Animales Recién Nacidos , Tipificación del Cuerpo/genética , Cartílago/embriología , Cartílago/metabolismo , Diferenciación Celular/genética , Cruzamientos Genéticos , Diafragma/inervación , Diafragma/metabolismo , Diafragma/ultraestructura , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Genotipo , Proteínas de Homeodominio/genética , Masculino , Mesodermo/embriología , Mesodermo/metabolismo , Modelos Biológicos , Neuronas Motoras/metabolismo , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Especificidad de Órganos/genética , Fosfoproteínas/genética , Mucosa Respiratoria/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/genética , Análisis de Supervivencia , Tráquea/embriología , Tráquea/metabolismo , Factores de Transcripción
2.
Development ; 142(21): 3801, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26534987

RESUMEN

There was an error published in Development 141, 3197-3211. In the key for Fig. 3C, the grey bars were labelled with the incorrect genotype name. The correct genotype is Mek1+/flox;Mek2−/−; Dermo1+/cre. This error does not affect the conclusions of the paper. The authors apologise to readers for this mistake.

3.
Development ; 142(17): 2981-95, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26329601

RESUMEN

Yin Yang 1 (YY1) is a multifunctional zinc-finger-containing transcription factor that plays crucial roles in numerous biological processes by selectively activating or repressing transcription, depending upon promoter contextual differences and specific protein interactions. In mice, Yy1 null mutants die early in gestation whereas Yy1 hypomorphs die at birth from lung defects. We studied how the epithelial-specific inactivation of Yy1 impacts on lung development. The Yy1 mutation in lung epithelium resulted in neonatal death due to respiratory failure. It impaired tracheal cartilage formation, altered cell differentiation, abrogated lung branching and caused airway dilation similar to that seen in human congenital cystic lung diseases. The cystic lung phenotype in Yy1 mutants can be partly explained by the reduced expression of Shh, a transcriptional target of YY1, in lung endoderm, and the subsequent derepression of mesenchymal Fgf10 expression. Accordingly, SHH supplementation partially rescued the lung phenotype in vitro. Analysis of human lung tissues revealed decreased YY1 expression in children with pleuropulmonary blastoma (PPB), a rare pediatric lung tumor arising during fetal development and associated with DICER1 mutations. No evidence for a potential genetic interplay between murine Dicer and Yy1 genes during lung morphogenesis was observed. However, the cystic lung phenotype resulting from the epithelial inactivation of Dicer function mimics the Yy1 lung malformations with similar changes in Shh and Fgf10 expression. Together, our data demonstrate the crucial requirement for YY1 in lung morphogenesis and identify Yy1 mutant mice as a potential model for studying the genetic basis of PPB.


Asunto(s)
Epitelio/embriología , Epitelio/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Morfogénesis , Factor de Transcripción YY1/metabolismo , Animales , Apoptosis , Tipificación del Cuerpo , Cartílago/anomalías , Cartílago/embriología , Cartílago/patología , Diferenciación Celular , Proliferación Celular , ARN Helicasas DEAD-box/metabolismo , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/patología , Endodermo/embriología , Endodermo/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Enfermedades Pulmonares/congénito , Enfermedades Pulmonares/patología , Ratones , Ratones Transgénicos , Modelos Biológicos , Miocitos del Músculo Liso/metabolismo , Miofibroblastos/patología , Fenotipo , Blastoma Pulmonar/metabolismo , Blastoma Pulmonar/patología , Ribonucleasa III/metabolismo , Tráquea/anomalías , Tráquea/embriología , Tráquea/patología
4.
Mamm Genome ; 29(3-4): 281-298, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29536159

RESUMEN

The human chromosomal region 17q12-q21 is one of the best replicated genome-wide association study loci for childhood asthma. The associated SNPs span a large genomic interval that includes several protein-coding genes. Here, we tested the hypothesis that the zona pellucida-binding protein 2 (ZPBP2) gene residing in this region contributes to asthma pathogenesis using a mouse model. We tested the lung phenotypes of knock-out (KO) mice that carry a deletion of the Zpbp2 gene. The deletion attenuated airway hypersensitivity (AHR) in female, but not male, mice in the absence of allergic sensitization. Analysis of the lipid profiles of their lungs showed that female, but not male, KO mice had significantly lower levels of sphingosine-1-phosphate (S1P), very long-chain ceramides (VLCCs), and higher levels of long-chain ceramides compared to wild-type controls. Furthermore, in females, lung resistance following methacholine challenge correlated with lung S1P levels (Pearson correlation coefficient 0.57) suggesting a link between reduced AHR in KO females, Zpbp2 deletion, and S1P level regulation. In livers, spleens and blood plasma, however, VLCC, S1P, and sphingosine levels were reduced in both KO females and males. We also find that the Zpbp2 deletion was associated with gain of methylation in the adjacent DNA regions. Thus, we demonstrate that the mouse ortholog of ZPBP2 has a role in controlling AHR in female mice. Our data also suggest that Zpbp2 may act through regulation of ceramide metabolism. These findings highlight the importance of phospholipid metabolism for sexual dimorphism in AHR.


Asunto(s)
Metabolismo de los Lípidos , Pulmón/metabolismo , Proteínas de la Membrana/genética , Hipersensibilidad Respiratoria/genética , Hipersensibilidad Respiratoria/patología , Caracteres Sexuales , Animales , Asma/genética , Asma/patología , Metilación de ADN/genética , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Inmunoglobulina E/metabolismo , Hígado/metabolismo , Hígado/patología , Pulmón/patología , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Cloruro de Metacolina , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Fenotipo , Regiones Promotoras Genéticas , Esfingolípidos/metabolismo , Transcriptoma/genética
5.
Dev Dyn ; 246(1): 72-82, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27748998

RESUMEN

BACKGROUND: Reciprocal epithelial-mesenchymal communications are critical throughout lung development, dictating branching morphogenesis and cell specification. Numerous signaling molecules are involved in these interactions, but the way epithelial-mesenchymal crosstalk is coordinated remains unclear. The ERK/MAPK pathway transduces several important signals in lung formation. Epithelial inactivation of both Mek genes, encoding ERK/MAPK kinases, causes lung agenesis and death. Conversely, Mek mutation in mesenchyme results in lung hypoplasia, trachea cartilage malformations, kyphosis, omphalocele, and death. Considering the negative impact of kyphosis and omphalocele on intrathoracic space and, consequently, on lung growth, the exact role of ERK/MAPK pathway in lung mesenchyme remains unresolved. RESULTS: To address the role of the ERK/MAPK pathway in lung mesenchyme in absence of kyphosis and omphalocele, we used the Tbx4Cre deleter mouse line, which acts specifically in lung mesenchyme. These Mek mutants did not develop kyphosis and omphalocele but they presented lung hypoplasia, tracheal defects, and neonatal death. Tracheal cartilage anomalies suggested a role for the ERK/MAPK pathway in the control of chondrocyte hypertrophy. Moreover, expression data indicated potential interactions between the ERK/MAPK and canonical Wnt pathways during lung formation. CONCLUSIONS: Lung development necessitates a functional ERK/MAPK pathway in the lung mesenchymal layer in order to coordinate efficient epithelial-mesenchymal interactions. Developmental Dynamics 246:72-82, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Comunicación Celular , Pulmón/crecimiento & desarrollo , Sistema de Señalización de MAP Quinasas/fisiología , Mesodermo/metabolismo , Organogénesis , Animales , Condrocitos/patología , Epitelio/embriología , Epitelio/fisiología , Pulmón/embriología , Sistema de Señalización de MAP Quinasas/genética , Mesodermo/embriología , Mesodermo/fisiología , Ratones , Mutación , Tráquea/anomalías , Vía de Señalización Wnt
7.
Development ; 141(16): 3197-211, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25100655

RESUMEN

The mammalian genome contains two ERK/MAP kinase genes, Mek1 and Mek2, which encode dual-specificity kinases responsible for ERK/MAP kinase activation. In order to define the function of the ERK/MAPK pathway in the lung development in mice, we performed tissue-specific deletions of Mek1 function on a Mek2 null background. Inactivation of both Mek genes in mesenchyme resulted in several phenotypes, including giant omphalocele, kyphosis, pulmonary hypoplasia, defective tracheal cartilage and death at birth. The absence of tracheal cartilage rings establishes the crucial role of intracellular signaling molecules in tracheal chondrogenesis and provides a putative mouse model for tracheomalacia. In vitro, the loss of Mek function in lung mesenchyme did not interfere with lung growth and branching, suggesting that both the reduced intrathoracic space due to the dysmorphic rib cage and the omphalocele impaired lung development in vivo. Conversely, Mek mutation in the respiratory epithelium caused lung agenesis, a phenotype resulting from the direct impact of the ERK/MAPK pathway on cell proliferation and survival. No tracheal epithelial cell differentiation occurred and no SOX2-positive progenitor cells were detected in mutants, implying a role for the ERK/MAPK pathway in trachea progenitor cell maintenance and differentiation. Moreover, these anomalies were phenocopied when the Erk1 and Erk2 genes were mutated in airway epithelium. Thus, the ERK/MAPK pathway is required for the integration of mesenchymal and epithelial signals essential for the development of the entire respiratory tract.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MAP Quinasa Quinasa 1/fisiología , MAP Quinasa Quinasa 2/fisiología , Sistema de Señalización de MAP Quinasas , Sistema Respiratorio/embriología , Animales , Apoptosis , Secuencia de Bases , Cartílago/embriología , Diferenciación Celular , Proliferación Celular , Perfilación de la Expresión Génica , Pulmón/embriología , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Fenotipo , Células Madre/citología , Tráquea/embriología
9.
J Exp Biol ; 220(Pt 24): 4571-4577, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29074702

RESUMEN

Fetal development of the respiratory tract and diaphragm requires strict coordination between genetically controlled signals and mechanical forces produced by the neural network that generates breathing. HOXA5, which is expressed in the mesenchyme of the trachea, lung and diaphragm, and in phrenic motor neurons, is a key transcription factor regulating lung development and function. Consequently, most Hoxa5-/- mutants die at birth from respiratory failure. However, the extensive effect of the null mutation makes it difficult to identify the origins of respiratory dysfunction in newborns. To address the physiological impact of Hoxa5 tissue-specific roles, we used conditional gene targeting with the Dermo1Cre and Olig2Cre mouse lines to produce specific Hoxa5 deletions in the mesenchyme and motor neurons, respectively. Hoxa5 expression in the mesenchyme is critical for trachea development, whereas its expression in phrenic motor neurons is essential for diaphragm formation. Breathing measurements in adult mice with whole-body plethysmography demonstrated that, at rest, only the motor neuron deletion affects respiration, resulting in higher breathing frequency and decreased tidal volume. But subsequent exposure to a moderate hypoxic challenge (FiO2 =0.12; 10 min) revealed that both mutant mice hyperventilate more than controls. Hoxa5flox/flox;Dermo1+/Cre mice showed augmented tidal volume while Hoxa5flox/flox;Olig2+/Cre mice had the largest increase in breathing frequency. No significant differences were observed between medulla-spinal cord preparations from E18.5 control and Hoxa5flox/flox;Olig2+/Cre mouse embryos that could support a role for Hoxa5 in fetal inspiratory motor command. According to our data, Hoxa5 expression in the mesenchyme and phrenic motor neurons controls distinct aspects of respiratory development.


Asunto(s)
Proteínas de Homeodominio/genética , Pulmón/embriología , Fosfoproteínas/genética , Insuficiencia Respiratoria/genética , Animales , Diafragma/fisiopatología , Eliminación de Gen , Marcación de Gen , Proteínas de Homeodominio/fisiología , Técnicas In Vitro , Pulmón/metabolismo , Pulmón/fisiopatología , Ratones , Ratones Noqueados , Mutación , Fosfoproteínas/fisiología , Pletismografía Total , Insuficiencia Respiratoria/fisiopatología , Tráquea/fisiopatología , Factores de Transcripción
10.
Paediatr Respir Rev ; 19: 62-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26907828

RESUMEN

It is well established that a number of birth defects are associated with improper formation of the respiratory tract. Important progress has been made in the identification of components of the regulatory networks controlling lung morphogenesis. They comprise a variety of soluble factors, receptors, transcription factors, and miRNAs. However, the underlying molecular mechanisms remain unsolved and fundamental questions, such as those related to lung branching are still unanswered. Congenital cystic lung diseases consist of a heterogeneous group of rare lung diseases mainly detected prenatally and characterized by airway dilatation. Despite their apparent phenotypic heterogeneity, these malformations are proposed to be related to a common malformation sequence occurring during lung branching morphogenesis.


Asunto(s)
Malformación Adenomatoide Quística Congénita del Pulmón/genética , Malformación Adenomatoide Quística Congénita del Pulmón/patología , Blastoma Pulmonar/genética , Blastoma Pulmonar/patología , Animales , Modelos Animales de Enfermedad , Humanos
11.
Proc Natl Acad Sci U S A ; 110(48): 19438-43, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218595

RESUMEN

To date, only the five most posterior groups of Hox genes, Hox9-Hox13, have demonstrated loss-of-function roles in limb patterning. Individual paralog groups control proximodistal patterning of the limb skeletal elements. Hox9 genes also initiate the onset of Hand2 expression in the posterior forelimb compartment, and collectively, the posterior HoxA/D genes maintain posterior Sonic Hedgehog (Shh) expression. Here we show that an anterior Hox paralog group, Hox5, is required for forelimb anterior patterning. Deletion of all three Hox5 genes (Hoxa5, Hoxb5, and Hoxc5) leads to anterior forelimb defects resulting from derepression of Shh expression. The phenotype requires the loss of all three Hox5 genes, demonstrating the high level of redundancy in this Hox paralogous group. Further analyses reveal that Hox5 interacts with promyelocytic leukemia zinc finger biochemically and genetically to restrict Shh expression. These findings, along with previous reports showing that point mutations in the Shh limb enhancer lead to similar anterior limb defects, highlight the importance of Shh repression for proper patterning of the vertebrate limb.


Asunto(s)
Miembro Anterior/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Organogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Miembro Anterior/metabolismo , Células HEK293 , Humanos , Hibridación in Situ , Ratones , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Transgenic Res ; 24(6): 1065-77, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26395370

RESUMEN

Temporal control of site-specific recombination is commonly achieved by using a tamoxifen-inducible form of Cre or Flp recombinases. Although powerful protocols of induction have been developed for gene inactivation at adult stages or during embryonic development, induction of recombination at late gestational or early postnatal stages is still difficult to achieve. In this context, using the ubiquitous CMV-CreER(T2) transgenic mice, we have tested and validated two procedures to achieve recombination just before and just after birth. The efficiency of recombination was evaluated in the brain, which is known to be more problematic to target. For the late gestation treatment with tamoxifen, different protocols of complementary administration of progesterone and estrogen were tested. However, delayed delivery and/or mortality of pups due to difficult delivery were always observed. To circumvent this problem, pups were collected from tamoxifen-treated pregnant dams by caesarian section at E18.5 and given to foster mothers. For postnatal treatment, different dosages of tamoxifen were administered by intragastric injection to the pups during 3 or 4 days after birth. The efficiency of these treatments was analyzed at P7 using a transgenic reporter line. They were also validated with the Hoxa5 conditional allele. In conclusion, we have developed efficient procedures that allow achieving efficient recombination of floxed alleles at perinatal stages. These protocols will allow investigating the late/adult functions of many developmental genes, whose characterization has been so far restricted to embryonic development.


Asunto(s)
Proteínas de Homeodominio/genética , Integrasas/metabolismo , Fosfoproteínas/genética , Receptores de Estrógenos/genética , Recombinación Genética , Tamoxifeno/farmacología , Animales , Animales Recién Nacidos , Antagonistas de Estrógenos/farmacología , Femenino , Integrasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Atención Perinatal , Embarazo , Factores de Transcripción
13.
Genesis ; 52(2): 149-56, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24307483

RESUMEN

The Hoxa5 homeobox gene encodes a transcription factor that plays a critical role in specifying the identity of the cervico-thoracic region along the anterior-posterior embryo axis and in orchestrating organ morphogenesis. The loss of Hoxa5 function results in skeletal transformations, lethality at birth due to lung defects, and organ anomalies affecting the digestive tract, the mammary gland and the ovary. Study of Hoxa5 gene regulation has revealed the interplay of several control regions that direct Hoxa5 developmental expression. Enhancers targeting expression in the CNS, the paraxial and lateral plate mesoderm at the cervico-thoracic level, and in the mesenchymal compartment of the respiratory and digestive tracts have been identified. Using these molecular tools, we have generated two Hoxa5/Cre transgenic mouse lines carrying different combinations of Hoxa5 regulatory enhancers and allowing site-specific recombination in subsets of Hoxa5 expression sites as tested with the Rosa26/lacZ reporter mice. Further validation of the recombination efficiency of the Hoxa5/Cre transgenic lines was performed with mice carrying a Hoxa5 conditional allele. Hoxa5 deletion with the Hoxa5/Cre mouse lines recapitulates Hoxa5 mutant phenotypes, such as skeletal defects, neonatal lethality, and lung malformations. Hoxa5/Cre mouse lines provide novel genetic tools for gene function analysis in defined tissues along the anterior-posterior axis.


Asunto(s)
Técnicas Genéticas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Integrasas , Pulmón/embriología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Animales , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Pulmón/patología , Ratones , Ratones Transgénicos , Secuencias Reguladoras de Ácidos Nucleicos , Reproducibilidad de los Resultados , Factores de Transcripción
14.
Commun Biol ; 7(1): 1166, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289460

RESUMEN

Motor neurons (MNs) are the final output of circuits driving fundamental behaviors, such as respiration and locomotion. Hox proteins are essential in generating the MN diversity required for accomplishing these functions, but the transcriptional mechanisms that enable Hox paralogs to assign distinct MN subtype identities despite their promiscuous DNA binding motif are not well understood. Here we show that Hoxa5 modifies chromatin accessibility in all mouse spinal cervical MN subtypes and engages TALE co-factors to directly bind and regulate subtype-specific genes. We identify a paralog-specific interaction of Hoxa5 with the phrenic MN-specific transcription factor Scip and show that heterologous expression of Hoxa5 and Scip is sufficient to suppress limb-innervating MN identity. We also demonstrate that phrenic MN identity is stable after Hoxa5 downregulation and identify Klf proteins as potential regulators of phrenic MN maintenance. Our data identify multiple modes of Hoxa5 action that converge to induce and maintain MN identity.


Asunto(s)
Proteínas de Homeodominio , Neuronas Motoras , Factores de Transcripción , Animales , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación del Desarrollo de la Expresión Génica
15.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370781

RESUMEN

Motor neurons (MNs) are the final output of circuits driving fundamental behaviors, such as respiration and locomotion. Hox proteins are essential in generating the MN diversity required for accomplishing these functions, but the transcriptional mechanisms that enable Hox paralogs to assign distinct MN subtype identities despite their promiscuous DNA binding motif are not well understood. Here we show that Hoxa5 controls chromatin accessibility in all mouse spinal cervical MN subtypes and engages TALE co-factors to directly bind and regulate subtype-specific genes. We identify a paralog-specific interaction of Hoxa5 with the phrenic MN-specific transcription factor Scip and show that heterologous expression of Hoxa5 and Scip is sufficient to suppress limb-innervating MN identity. We also demonstrate that phrenic MN identity is stable after Hoxa5 downregulation and identify Klf proteins as potential regulators of phrenic MN maintenance. Our data identify multiple modes of Hoxa5 action that converge to induce and maintain MN identity.

16.
Am J Physiol Lung Cell Mol Physiol ; 304(12): L817-30, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23585229

RESUMEN

Hox genes encode transcription factors governing complex developmental processes in several organs. A subset of Hox genes are expressed in the developing lung. Except for Hoxa5, the lack of overt lung phenotype in single mutants suggests that Hox genes may not play a predominant role in lung ontogeny or that functional redundancy may mask anomalies. In the Hox5 paralog group, both Hoxa5 and Hoxb5 genes are expressed in the lung mesenchyme whereas Hoxa5 is also expressed in the tracheal mesenchyme. Herein, we generated Hoxa5;Hoxb5 compound mutant mice to evaluate the relative contribution of each gene to lung development. Hoxa5;Hoxb5 mutants carrying the four mutated alleles displayed an aggravated lung phenotype, resulting in the death of the mutant pups at birth. Characterization of the phenotype highlighted the role of Hoxb5 in lung formation, the latter being involved in branching morphogenesis, goblet cell specification, and postnatal air space structure, revealing partial functional redundancy with Hoxa5. However, the Hoxb5 lung phenotypes were less severe than those seen in Hoxa5 mutants, likely because of Hoxa5 compensation. New specific roles for Hoxa5 were also unveiled, demonstrating the extensive contribution of Hoxa5 to the developing respiratory system. The exclusive expression of Hoxa5 in the trachea and the phrenic motor column likely underlies the Hoxa5-specific trachea and diaphragm phenotypes. Altogether, our observations establish that the Hoxa5 and Hoxb5 paralog genes shared some functions during lung morphogenesis, Hoxa5 playing a predominant role.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Pulmón/metabolismo , Morfogénesis/genética , Fosfoproteínas/genética , Animales , Diafragma/embriología , Diafragma/metabolismo , Embrión de Mamíferos , Femenino , Células Caliciformes/metabolismo , Heterocigoto , Proteínas de Homeodominio/metabolismo , Homocigoto , Pulmón/embriología , Masculino , Ratones , Ratones Transgénicos , Fosfoproteínas/metabolismo , Nervio Frénico/embriología , Nervio Frénico/metabolismo , Tráquea/embriología , Tráquea/metabolismo , Factores de Transcripción
17.
Nat Cell Biol ; 8(9): 1017-24, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16921363

RESUMEN

Chromosomal translocation is a common cause of leukaemia and the most common chromosome translocations found in leukaemia patients involve the mixed lineage leukaemia (MLL) gene. AF10 is one of more than 30 MLL fusion partners in leukaemia. We have recently demonstrated that the H3K79 methyltransferase hDOT1L contributes to MLL-AF10-mediated leukaemogenesis through its interaction with AF10 (ref. 5). In addition to MLL, AF10 has also been reported to fuse to CALM (clathrin-assembly protein-like lymphoid-myeloid) in patients with T-cell acute lymphoblastic leukaemia (T-ALL) and acute myeloid leukaemia (AML). Here, we analysed the molecular mechanism of leukaemogenesis by CALM-AF10. We demonstrate that CALM-AF10 fusion is both necessary and sufficient for leukaemic transformation. Additionally, we provide evidence that hDOT1L has an important role in the transformation process. hDOT1L contributes to CALM-AF10-mediated leukaemic transformation by preventing nuclear export of CALM-AF10 and by upregulating the Hoxa5 gene through H3K79 methylation. Thus, our study establishes CALM-AF10 fusion as a cause of leukaemia and reveals that mistargeting of hDOT1L and upregulation of Hoxa5 through H3K79 methylation is the underlying mechanism behind leukaemia caused by CALM-AF10 fusion.


Asunto(s)
Transformación Celular Neoplásica/patología , Proteínas de Homeodominio/biosíntesis , Leucemia Experimental/patología , Metiltransferasas/fisiología , Proteínas de Ensamble de Clatrina Monoméricas/fisiología , Proteínas de Fusión Oncogénica/fisiología , Factores de Transcripción/fisiología , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , N-Metiltransferasa de Histona-Lisina , Humanos , Leucemia Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Fosfoproteínas/biosíntesis , Células U937 , Regulación hacia Arriba
18.
Exp Lung Res ; 39(4-5): 207-16, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23638644

RESUMEN

The mucociliary system, consisting of mucus-secreting goblet cells and ciliated cells, generates a constant overturning layer of protective mucus that lines the airway epithelium. Mucus hypersecretion and the pathophysiological changes associated are hallmarks of many pulmonary diseases including asthma, chronic obstructive pulmonary disease, and cystic fibrosis. Excessive mucus production leads to airway obstruction and, because there is currently no effective treatment, contributes to morbidity and mortality of many patients. Goblet cell differentiation and mucus production are subject to extensive control. An emerging concept is that not all goblet cells are phenotypically identical suggesting that specific molecular pathways orchestrate mucin overproduction. This paper attempts to describe the cellular and molecular mechanisms governing the differentiation of goblet cells in pulmonary diseases, a prerequisite for the development of new therapeutic agents.


Asunto(s)
Células Caliciformes/patología , Mucosa Respiratoria/patología , Animales , Diferenciación Celular , Linaje de la Célula , Células Caliciformes/metabolismo , Humanos , Metaplasia , Depuración Mucociliar , Moco/metabolismo , Mucosa Respiratoria/metabolismo
19.
Front Cell Dev Biol ; 10: 806545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557949

RESUMEN

The skeletal system derives from multiple embryonic sources whose derivatives must develop in coordination to produce an integrated whole. In particular, interactions across the lateral somitic frontier, where derivatives of the somites and lateral plate mesoderm come into contact, are important for proper development. Many questions remain about genetic control of this coordination, and embryological information is incomplete for some structures that incorporate the frontier, including the sternum. Hox genes act in both tissues as regulators of skeletal pattern. Here, we used conditional deletion to characterize the tissue-specific contributions of Hoxa5 to skeletal patterning. We found that most aspects of the Hoxa5 skeletal phenotype are attributable to its activity in one or the other tissue, indicating largely additive roles. However, multiple roles are identified at the junction of the T1 ribs and the anterior portion of the sternum, or presternum. The embryology of the presternum has not been well described in mouse. We present a model for presternum development, and show that it arises from multiple, paired LPM-derived primordia. We show evidence that HOXA5 expression marks the embryonic precursor of a recently identified lateral presternum structure that is variably present in therians.

20.
Genesis ; 49(3): 152-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21309069

RESUMEN

Cre-expressing mouse lines constitute an important asset to mammalian genetics, allowing the deletion of genes in a spatio-temporal specific manner. Our study on Hox gene function in lung development has led us to use a lung endoderm-specific deletion with the Sftpc-cre mouse line expressing the Cre recombinase gene under the control of human surfactant protein C regulatory sequences. In control experiments, the Cre recombinase faithfully activated the Rosa26-lacZ reporter gene in lung epithelium. However as early as e15.5, lungs from Sftp-Cre(+) embryos showed abnormal dilated cysts. This unexpected phenotype was also observed in mice carrying the conditional lung epithelial Hoxa5 deletion, indicating some bias due to Cre deleterious effects. Excessive apoptosis, likely due to Cre toxicity, could explain the abnormal cysts. Our findings illustrate the need for appropriate control experiments and careful interpretation of data to discriminate between the phenotype due to the targeted mutation and the confounding effects of the Cre recombinase.


Asunto(s)
Eliminación de Gen , Proteínas de Homeodominio/genética , Integrasas/genética , Pulmón/citología , Fosfoproteínas/genética , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Genes Reporteros , Genotipo , Humanos , Ratones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Fenotipo , Recombinación Genética , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA