Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37468090

RESUMEN

The biological consequences of catch-and-release angling have been studied for decades, yet little is known about the compounding effects of repeated recreational fisheries recaptures on the physiology and behaviour of angled fish. Using heart rate biologgers and behavioural assays, this study investigated the physiological and behavioural consequences of multiple simulated angling events (i.e., repeated stressors) on female steelhead (Oncorhynchus mykiss), under current (6 °C) and future (11 °C) water temperature scenarios. While steelhead in the warmer water temperature scenario demonstrated alterations in cardiac function (e.g., increases in maximum heart rate and scope of heart rate) and evidence of behavioural impairments (e.g., decreases in chase activity and landing time) over the course of two simulated angling events, cold water treated fish had negligible change. Fish subjected to two simulated angling events under warm water temperature conditions tended to demonstrate an increase in recovery time and scope for heart rate, and a decrease in resting heart rate. A second experiment was conducted to test for sex-specific differences in the heart rate response of steelhead subjected to an increase in water temperature. Females demonstrated a higher scope for heart rate when compared to males during the event and during recovery. More work is needed to better understand the interaction between multiple angling events and recovery from these events at various water temperatures, and the biological basis for sex-specific differences in cardiac function and response to challenges. This study contributes to a growing body of evidence on the effects of repeated stressors on wild fish.


Asunto(s)
Oncorhynchus mykiss , Masculino , Femenino , Animales , Temperatura , Agua , Explotaciones Pesqueras , Metabolismo Energético
2.
Rev Fish Biol Fish ; 33(2): 349-374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35968251

RESUMEN

Fisheries are highly complex social-ecological systems that often face 'wicked' problems from unsustainable resource management to climate change. Addressing these challenges requires transdisciplinary approaches that integrate perspectives across scientific disciplines and knowledge systems. Despite widespread calls for transdisciplinary fisheries research (TFR), there are still limitations in personal and institutional capacity to conduct and support this work to the highest potential. The viewpoints of early career researchers (ECRs) in this field can illuminate challenges and promote systemic change within fisheries research. This paper presents the perspectives of ECRs from across the globe, gathered through a virtual workshop held during the 2021 World Fisheries Congress, on goals, challenges, and future potential for TFR. Big picture goals for TFR were guided by principles of co-production and included (i) integrating transdisciplinary thinking at all stages of the research process, (ii) ensuring that research is inclusive and equitable, (iii) co-creating knowledge that is credible, relevant, actionable, and impactful, and (iv) consistently communicating with partners. Institutional inertia, lack of recognition of the extra time and labour required for TFR, and lack of skill development opportunities were identified as three key barriers in conducting TFR. Several critical actions were identified to help ECRs, established researchers, and institutions reach these goals. We encourage ECRs to form peer-mentorship networks to guide each other along the way. We suggest that established researchers ensure consistent mentorship while also giving space to ECR voices. Actions for institutions include retooling education programs, developing and implementing new metrics of impact, and critically examining individualism and privilege in academia. We suggest that the opportunities and actions identified here, if widely embraced now, can enable research that addresses complex challenges facing fishery systems contributing to a healthier future for fish and humans alike.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA