Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Ecol ; : e17448, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946210

RESUMEN

Species with widespread distributions play a crucial role in our understanding of climate change impacts on population structure. In marine species, population structure is often governed by both high connectivity potential and selection across strong environmental gradients. Despite the complexity of factors influencing marine populations, studying species with broad distribution can provide valuable insights into the relative importance of these factors and the consequences of climate-induced alterations across environmental gradients. We used the northern shrimp Pandalus borealis and its wide latitudinal distribution to identify current drivers of population structure and predict the species' vulnerability to climate change. A total of 1514 individuals sampled across 24° latitude were genotyped at high geographic (54 stations) and genetic (14,331 SNPs) resolutions to assess genetic variation and environmental correlations. Four populations were identified in addition to finer substructure associated with local adaptation. Geographic patterns of neutral population structure reflected predominant oceanographic currents, while a significant proportion of the genetic variation was associated with gradients in salinity and temperature. Adaptive landscapes generated using climate projections suggest a larger genomic offset in the southern extent of the P. borealis range, where shrimp had the largest adaptive standing genetic variation. Our genomic results combined with recent observations point to further deterioration in southern regions and an impending vulnerable status in the regions at higher latitudes for P. borealis. They also provide rare insights into the drivers of population structure and climatic vulnerability of a widespread meroplanktonic species, which is crucial to understanding future challenges associated with invertebrates essential to ecosystem functioning.

2.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099551

RESUMEN

Despite progress uncovering the genomic underpinnings of sociality, much less is known about how social living affects the genome. In different insect lineages, for example, eusocial species show both positive and negative associations between genome size and structure, highlighting the dynamic nature of the genome. Here, we explore the relationship between sociality and genome architecture in Synalpheus snapping shrimps that exhibit multiple origins of eusociality and extreme interspecific variation in genome size. Our goal is to determine whether eusociality leads to an accumulation of repetitive elements and an increase in genome size, presumably due to reduced effective population sizes resulting from a reproductive division of labor, or whether an initial accumulation of repetitive elements leads to larger genomes and independently promotes the evolution of eusociality through adaptive evolution. Using phylogenetically informed analyses, we find that eusocial species have larger genomes with more transposable elements (TEs) and microsatellite repeats than noneusocial species. Interestingly, different TE subclasses contribute to the accumulation in different species. Phylogenetic path analysis testing alternative causal relationships between sociality and genome architecture is most consistent with the hypothesis that TEs modulate the relationship between sociality and genome architecture. Although eusociality appears to influence TE accumulation, ancestral state reconstruction suggests moderate TE abundances in ancestral species could have fueled the initial transitions to eusociality. Ultimately, we highlight a complex and dynamic relationship between genome and social evolution, demonstrating that sociality can influence the evolution of the genome, likely through changes in demography related to patterns of reproductive skew.


Asunto(s)
Elementos Transponibles de ADN/genética , Decápodos/genética , Tamaño del Genoma , Genoma , Conducta Social , Animales , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos/genética
3.
Ecol Appl ; 32(3): e2546, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35080327

RESUMEN

Marine classification schemes based on abiotic surrogates often inform regional marine conservation planning in lieu of detailed biological data. However, these schemes may poorly represent ecologically relevant biological patterns required for effective design and management strategies. We used a community-level modeling approach to characterize and delineate representative mesoscale (tens to thousands of kilometers) assemblages of demersal fish and benthic invertebrates in the Northwest Atlantic. Hierarchical clustering of species occurrence data from four regional annual multispecies trawl surveys revealed three to six groupings (predominant assemblage types) in each survey region, broadly associated with geomorphic and oceanographic features. Indicator analyses identified 3-34 emblematic taxa of each assemblage type. Random forest classifications accurately predicted assemblage distributions from environmental covariates (AUC > 0.95) and identified thermal limits (annual minimum and maximum bottom temperatures) as important predictors of distribution in each region. Using forecasted oceanographic conditions for the year 2075 and a regional classification model, we projected assemblage distributions in the southernmost bioregion (Scotian Shelf-Bay of Fundy) under a high emissions climate scenario (RCP 8.5). Range expansions to the northeast are projected for assemblages associated with warmer and shallower waters of the Western Scotian Shelf over the 21st century as thermal habitat on the relatively cooler Eastern Scotian Shelf becomes more favorable. Community-level modeling provides a biotic-informed approach for identifying broadscale ecological structure required for the design and management of ecologically coherent, representative, well-connected networks of Marine Protected Areas. When combined with oceanographic forecasts, this modeling approach provides a spatial tool for assessing sensitivity and resilience to climate change, which can improve conservation planning, monitoring, and adaptive management.


Asunto(s)
Peces , Invertebrados , Animales , Cambio Climático , Ecosistema , Temperatura
4.
Heredity (Edinb) ; 122(1): 69-80, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29773897

RESUMEN

In the northwest Atlantic Ocean, sea scallop (Placopecten magellanicus) has been characterized by a latitudinal genetic cline with a breakpoint between northern and southern genetic clusters occurring at ~45°N along eastern Nova Scotia, Canada. Using 96 diagnostic single-nucleotide polymorphisms (SNPs) capable of discriminating between northern and southern clusters, we examined fine-scale genetic structure of scallops among 27 sample locations, spanning the largest geographic range evaluated in this species to date (~37-51°N). Here, we confirmed previous observations of northern and southern groups, but we show that the boundary between northern and southern clusters is not a discrete latitudinal break. Instead, at latitudes near the previously described boundary, we found unexpected patterns of fine-scale genetic structure occurring between inshore and offshore sites. Scallops from offshore sites, including St. Pierre Bank and the eastern Scotian Shelf, clustered with southern stocks, whereas inshore sites at similar latitudes clustered with northern stocks. Our analyses revealed significant genetic divergence across small spatial scales (i.e., 129-221 km distances), and that spatial structure over large and fine scales was strongly associated with temperature during seasonal periods of thermal minima. Clear temperature differences between inshore and offshore locations may explain the fine-scale structuring observed, such as why southern lineages of scallop occur at higher latitudes in deeper, warmer offshore waters. Our study supports growing evidence that fine-scale population structure in marine species is common, often environmentally associated, and that consideration of environmental and genomic data can significantly enhance the identification of marine diversity and management units.


Asunto(s)
Organismos Acuáticos/genética , Variación Genética , Genética de Población , Pectinidae/genética , Animales , Organismos Acuáticos/fisiología , Océano Atlántico , Canadá , Ecosistema , Pectinidae/fisiología , Polimorfismo de Nucleótido Simple/genética , Temperatura
5.
Genome ; 60(4): 303-309, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28177846

RESUMEN

Lake Baikal in Russia is a large, ancient lake that has been the site of a major radiation of amphipod crustaceans. Nearly 400 named species are known in this single lake, and it is thought that many more await description. The size and depth of Lake Baikal, in particular, may have contributed to the radiation of endemic amphipods by providing a large number of microhabitats for species to invade and subsequently experience reproductive isolation. Here we investigate the possibility that large-scale genomic changes have also accompanied diversification in these crustaceans. Specifically, we report genome size estimates for 36 species of Baikal amphipods, and examine the relationship between genome size, body size, and the maximum depths at which the amphipods are found in the lake. Genome sizes ranged nearly 8-fold in this sample of amphipod species, from 2.15 to 16.63 pg, and there were significant, positive, phylogenetically corrected relationships between genome size, body size, maximum depth, and diversification rate among these species. Our results suggest that major genomic changes, including transposable element proliferation, have accompanied speciation that was driven by selection for differences in body size and habitat preference in Lake Baikal amphipods.


Asunto(s)
Anfípodos/genética , Tamaño Corporal , Núcleo Celular/genética , ADN/análisis , Anfípodos/clasificación , Anfípodos/fisiología , Animales , Especiación Genética , Tamaño del Genoma , Lagos , Filogenia , Federación de Rusia , Selección Genética
6.
J Hered ; 108(6): 701-706, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28595313

RESUMEN

Within animals, a positive correlation between genome size and body size has been detected in several taxa but not in others, such that it remains unknown how pervasive this pattern may be. Here, we provide another example of a positive relationship in a group of crustaceans whose genome sizes have not previously been investigated. We analyze genome size estimates for 46 species across the 2 most diverse orders of Class Ostracoda, commonly known as seed shrimps, including 29 new estimates made using Feulgen image analysis densitometry and flow cytometry. Genome sizes in this group range ~80-fold, a level of variability that is otherwise not seen in crustaceans with the exception of some malacostracan orders. We find a strong positive correlation between genome size and body size across all species, including after phylogenetic correction. We additionally detect evidence of XX/XO sex determination in 3 species of marine ostracods where male and female genome sizes were estimated. On average, genome sizes are larger but less variable in Order Myodocopida than in Order Podocopida, and marine ostracods have larger genomes than freshwater species, but this appears to be explained by phylogenetic inertia. The relationship between phylogeny, genome size, body size, and habitat is complex in this system and provides a baseline for future studies examining the interactions of these biological traits.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Crustáceos/genética , Tamaño del Genoma , Animales , Crustáceos/clasificación , Ambiente , Femenino , Masculino , Filogenia
7.
Genome ; 59(6): 393-402, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27171678

RESUMEN

Although crustaceans vary extensively in genome size, little is known about how genome size may affect the ecology and evolution of species in this diverse group, in part due to the lack of large genome size datasets. Here we investigate interspecific, intraspecific, and intracolony variation in genome size in 39 species of Synalpheus shrimps, representing one of the largest genome size datasets for a single genus within crustaceans. We find that genome size ranges approximately 4-fold across Synalpheus with little phylogenetic signal, and is not related to body size. In a subset of these species, genome size is related to chromosome size, but not to chromosome number, suggesting that despite large genomes, these species are not polyploid. Interestingly, there appears to be 35% intraspecific genome size variation in Synalpheus idios among geographic regions, and up to 30% variation in Synalpheus duffyi genome size within the same colony.


Asunto(s)
Decápodos/genética , Animales , Evolución Biológica , Cromosomas , Evolución Molecular , Duplicación de Gen , Tamaño del Genoma , Filogenia , Poliploidía
8.
Cytometry A ; 85(10): 862-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25139836

RESUMEN

Crustaceans are enormously diverse both phylogenetically and ecologically, but they remain substantially underrepresented in the existing genome size database. An expansion of this dataset could be facilitated if it were possible to obtain genome size estimates from ethanol-preserved specimens. In this study, two tests were performed in order to assess the reliability of genome size data generated using preserved material. First, the results of estimates based on flash-frozen versus ethanol-preserved material were compared across 37 species of crustaceans that differ widely in genome size. Second, a comparison was made of specimens from a single species that had been stored in ethanol for 1-14 years. In both cases, the use of gill tissue in Feulgen image analysis densitometry proved to be a very viable approach. This finding is of direct relevance to both new studies of field-collected crustaceans as well as potential studies based on existing collections.


Asunto(s)
Crustáceos/genética , Criopreservación/métodos , Densitometría/métodos , Etanol/administración & dosificación , Tamaño del Genoma/genética , Colorantes de Rosanilina/administración & dosificación , Animales , Crustáceos/citología
9.
Evol Appl ; 17(4): e13671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38650965

RESUMEN

A global decline in seagrass populations has led to renewed calls for their conservation as important providers of biogenic and foraging habitat, shoreline stabilization and carbon storage. Eelgrass (Zostera marina) occupies the largest geographic range among seagrass species spanning a commensurately broad spectrum of environmental conditions. In Canada, eelgrass is managed as a single phylogroup despite occurring across three oceans and a range of ocean temperatures and salinity gradients. Previous research has focused on applying relatively few markers to reveal population structure of eelgrass, whereas a whole-genome approach is warranted to investigate cryptic structure among populations inhabiting different ocean basins and localized environmental conditions. We used a pooled whole-genome re-sequencing approach to characterize population structure, gene flow and environmental associations of 23 eelgrass populations ranging from the Northeast United States to Atlantic, subarctic and Pacific Canada. We identified over 500,000 SNPs, which when mapped to a chromosome-level genome assembly revealed six broad clades of eelgrass across the study area, with pairwise F ST ranging from 0 among neighbouring populations to 0.54 between Pacific and Atlantic coasts. Genetic diversity was highest in the Pacific and lowest in the subarctic, consistent with colonization of the Arctic and Atlantic oceans from the Pacific less than 300 kya. Using redundancy analyses and two climate change projection scenarios, we found that subarctic populations are predicted to be potentially more vulnerable to climate change through genomic offset predictions. Conservation planning in Canada should thus ensure that representative populations from each identified clade are included within a national network so that latent genetic diversity is protected, and gene flow is maintained. Northern populations, in particular, may require additional mitigation measures given their potential susceptibility to a rapidly changing climate.

10.
Genome ; 56(8): 451-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24168628

RESUMEN

The phyla known as early-branching lineages of animals have become the subject of increasing interest from the perspectives of genomics and evolutionary biology. Unfortunately, data on even the most fundamental properties of their genomes, such as genome size, remain very scarce. In this study, genome size estimates are reported for 75 species of sponges (phylum Porifera) representing 33 families and 12 orders, marking the first large survey of genome size diversity for an early-branching phylum. Sponge genome sizes averaged around 0.2 pg but exhibited a 17-fold range overall (0.04-0.63 pg). In addition, the results of comparisons of two methods of genome size quantification (flow cytometry and Feulgen image analysis densitometry) are presented, thereby facilitating future work on these animals. Some particularly promising avenues for future investigation are highlighted.


Asunto(s)
Tamaño del Genoma , Poríferos/genética , Animales , Densitometría , Evolución Molecular , Citometría de Flujo , Genoma , Filogenia , Poríferos/clasificación , Colorantes de Rosanilina , Simbiosis
11.
BMC Ecol ; 13: 13, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23557180

RESUMEN

BACKGROUND: Biodiversity surveys have long depended on traditional methods of taxonomy to inform sampling protocols and to determine when a representative sample of a given species pool of interest has been obtained. Questions remain as to how to design appropriate sampling efforts to accurately estimate total biodiversity. Here we consider the biodiversity of freshwater ostracods (crustacean class Ostracoda) from the region of Churchill, Manitoba, Canada. Through an analysis of observed species richness and complementarity, accumulation curves, and richness estimators, we conduct an a posteriori analysis of five bioblitz-style collection strategies that differed in terms of total duration, number of sites, protocol flexibility to heterogeneous habitats, sorting of specimens for analysis, and primary purpose of collection. We used DNA barcoding to group specimens into molecular operational taxonomic units for comparison. RESULTS: Forty-eight provisional species were identified through genetic divergences, up from the 30 species previously known and documented in literature from the Churchill region. We found differential sampling efficiency among the five strategies, with liberal sorting of specimens for molecular analysis, protocol flexibility (and particularly a focus on covering diverse microhabitats), and a taxon-specific focus to collection having strong influences on garnering more accurate species richness estimates. CONCLUSIONS: Our findings have implications for the successful design of future biodiversity surveys and citizen-science collection projects, which are becoming increasingly popular and have been shown to produce reliable results for a variety of taxa despite relying on largely untrained collectors. We propose that efficiency of biodiversity surveys can be increased by non-experts deliberately selecting diverse microhabitats; by conducting two rounds of molecular analysis, with the numbers of samples processed during round two informed by the singleton prevalence during round one; and by having sub-teams (even if all non-experts) focus on select taxa. Our study also provides new insights into subarctic diversity of freshwater Ostracoda and contributes to the broader "Barcoding Biotas" campaign at Churchill. Finally, we comment on the associated implications and future research directions for community ecology analyses and biodiversity surveys through DNA barcoding, which we show here to be an efficient technique enabling rapid biodiversity quantification in understudied taxa.


Asunto(s)
Biodiversidad , Crustáceos/clasificación , Crustáceos/genética , Agua Dulce/parasitología , Animales , ADN/genética , Código de Barras del ADN Taxonómico/métodos , Manitoba , Filogenia
12.
Genetica ; 140(10-12): 497-504, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23307271

RESUMEN

The Onychophora (velvet worms) represents a small group of invertebrates (~180 valid species), which is commonly united with Tardigrada and Arthropoda in a clade called Panarthropoda. As with the majority of invertebrate taxa, genome size data are very limited for the Onychophora, with only one previously published estimate. Here we use both flow cytometry and Feulgen image analysis densitometry to provide genome size estimates for seven species of velvet worms from both major subgroups, Peripatidae and Peripatopsidae, along with karyotype data for each species. Genome sizes in these species range from roughly 5-19 pg, with densitometric estimates being slightly larger than those obtained by flow cytometry for all species. Chromosome numbers range from 2n = 8 to 2n = 54. No relationship is evident between genome size, chromosome number, or reproductive mode. Various avenues for future genomic research are presented based on these results.


Asunto(s)
Cromosomas/genética , Tamaño del Genoma , Invertebrados/clasificación , Invertebrados/genética , Animales , Evolución Molecular , Genómica/métodos , Filogenia
13.
Front Genet ; 13: 886494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812740

RESUMEN

A key component of the global blue economy strategy is the sustainable extraction of marine resources and conservation of marine environments through networks of marine protected areas (MPAs). Connectivity and representativity are essential factors that underlie successful implementation of MPA networks, which can safeguard biological diversity and ecosystem function, and ultimately support the blue economy strategy by balancing ocean use with conservation. New "big data" omics approaches, including genomics and transcriptomics, are becoming essential tools for the development and maintenance of MPA networks. Current molecular omics techniques, including population-scale genome sequencing, have direct applications for assessing population connectivity and for evaluating how genetic variation is represented within and among MPAs. Effective baseline characterization and long-term, scalable, and comprehensive monitoring are essential for successful MPA management, and omics approaches hold great promise to characterize the full range of marine life, spanning the microbiome to megafauna across a range of environmental conditions (shallow sea to the deep ocean). Omics tools, such as eDNA metabarcoding can provide a cost-effective basis for biodiversity monitoring in large and remote conservation areas. Here we provide an overview of current omics applications for conservation planning and monitoring, with a focus on metabarcoding, metagenomics, and population genomics. Emerging approaches, including whole-genome sequencing, characterization of genomic architecture, epigenomics, and genomic vulnerability to climate change are also reviewed. We demonstrate that the operationalization of omics tools can enhance the design, monitoring, and management of MPAs and thus will play an important role in a modern and comprehensive blue economy strategy.

14.
Evol Appl ; 13(5): 1055-1068, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32431752

RESUMEN

The resiliency of populations and species to environmental change is dependent on the maintenance of genetic diversity, and as such, quantifying diversity is central to combating ongoing widespread reductions in biodiversity. With the advent of next-generation sequencing, several methods now exist for resolving fine-scale population structure, but the comparative performance of these methods for genetic assignment has rarely been tested. Here, we evaluate the performance of sequenced microsatellites and a single nucleotide polymorphism (SNP) array to resolve fine-scale population structure in a critically important salmonid in north eastern Canada, Arctic Charr (Salvelinus alpinus). We also assess the utility of sequenced microsatellites for fisheries applications by quantifying the spatial scales of movement and exploitation through genetic assignment of fishery samples to rivers of origin and comparing these results with a 29-year tagging dataset. Self-assignment and simulation-based analyses of 111 genome-wide microsatellite loci and 500 informative SNPs from 28 populations of Arctic Charr in north-eastern Canada identified largely river-specific genetic structure. Despite large differences (~4X) in the number of loci surveyed between panels, mean self-assignment accuracy was similar with the microsatellite loci and the SNP panel (>90%). Subsequent analysis of 996 fishery-collected samples using the microsatellite panel revealed that larger rivers contribute greater numbers of individuals to the fishery and that coastal fisheries largely exploit individuals originating from nearby rivers, corroborating results from traditional tagging experiments. Our results demonstrate the efficacy of sequence-based microsatellite genotyping to advance understanding of fine-scale population structure and harvest composition in northern and understudied species.

15.
PeerJ ; 7: e7221, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681508

RESUMEN

In 2010, the Conference of the Parties of the Convention on Biological Diversity agreed on the Strategic Plan for Biodiversity 2011-2020 in Aichi Prefecture, Japan. As this plan approaches its end, we discussed whether marine biodiversity and prediction studies were nearing the Aichi Targets during the 4th World Conference on Marine Biodiversity held in Montreal, Canada in June 2018. This article summarises the outcome of a five-day group discussion on how global marine biodiversity studies should be focused further to better understand the patterns of biodiversity. We discussed and reviewed seven fundamental biodiversity priorities related to nine Aichi Targets focusing on global biodiversity discovery and predictions to improve and enhance biodiversity data standards (quantity and quality), tools and techniques, spatial and temporal scale framing, and stewardship and dissemination. We discuss how identifying biodiversity knowledge gaps and promoting efforts have and will reduce such gaps, including via the use of new databases, tools and technology, and how these resources could be improved in the future. The group recognised significant progress toward Target 19 in relation to scientific knowledge, but negligible progress with regard to Targets 6 to 13 which aimed to safeguard and reduce human impacts on biodiversity.

16.
Sci Adv ; 5(11): eaay9969, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31807711

RESUMEN

The impacts of climate change and the socioecological challenges they present are ubiquitous and increasingly severe. Practical efforts to operationalize climate-responsive design and management in the global network of marine protected areas (MPAs) are required to ensure long-term effectiveness for safeguarding marine biodiversity and ecosystem services. Here, we review progress in integrating climate change adaptation into MPA design and management and provide eight recommendations to expedite this process. Climate-smart management objectives should become the default for all protected areas, and made into an explicit international policy target. Furthermore, incentives to use more dynamic management tools would increase the climate change responsiveness of the MPA network as a whole. Given ongoing negotiations on international conservation targets, now is the ideal time to proactively reform management of the global seascape for the dynamic climate-biodiversity reality.


Asunto(s)
Aclimatación , Organismos Acuáticos , Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Océanos y Mares
17.
Evol Appl ; 11(6): 869-882, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29928296

RESUMEN

Genetic-environment associations are increasingly revealed through population genomic data and can occur through a number of processes, including secondary contact, divergent natural selection, or isolation by distance. Here, we investigate the influence of the environment, including seasonal temperature and salinity, on the population structure of the invasive European green crab (Carcinus maenas) in eastern North America. Green crab populations in eastern North America are associated with two independent invasions, previously shown to consist of distinct northern and southern ecotypes, with a contact zone in southern Nova Scotia, Canada. Using a RAD-seq panel of 9,137 genomewide SNPs, we detected 41 SNPs (0.49%) whose allele frequencies were highly correlated with environmental data. A principal components analysis of 25 environmental variables differentiated populations into northern, southern, and admixed sites in concordance with the observed genomic spatial structure. Furthermore, a spatial principal components analysis conducted on genomic and geographic data revealed a high degree of global structure (p < .0001) partitioning a northern and southern ecotype. Redundancy and partial redundancy analyses revealed that among the environmental variables tested, winter sea surface temperature had the strongest association with spatial structuring, suggesting that it is an important factor defining range and expansion limits of each ecotype. Understanding environmental thresholds associated with intraspecific diversity will facilitate the ability to manage current and predict future distributions of this aquatic invasive species.

18.
Evol Appl ; 11(9): 1656-1670, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30344634

RESUMEN

Two genetically distinct lineages of European green crabs (Carcinus maenas) were independently introduced to eastern North America, the first in the early 19th century and the second in the late 20th century. These lineages first came into secondary contact in southeastern Nova Scotia, Canada (NS), where they hybridized, producing latitudinal genetic clines. Previous studies have documented a persistent southward shift in the clines of different marker types, consistent with existing dispersal and recruitment pathways. We evaluated current clinal structure by quantifying the distribution of lineages and fine-scale hybridization patterns across the eastern North American range (25 locations, ~39 to 49°N) using informative single nucleotide polymorphisms (SNPs; n = 96). In addition, temporal changes in the genetic clines were evaluated using mitochondrial DNA and microsatellite loci (n = 9-11) over a 15-year period (2000-2015). Clinal structure was consistent with prior work demonstrating the existence of both northern and southern lineages with a hybrid zone occurring between southern New Brunswick (NB) and southern NS. Extensive later generation hybrids were detected in this region and in southeastern Newfoundland. Temporal genetic analysis confirmed the southward progression of clines over time; however, the rate of this progression was slower than predicted by forecasting models, and current clines for all marker types deviated significantly from these predictions. Our results suggest that neutral and selective processes contribute to cline dynamics, and ultimately, highlight how selection, hybridization, and dispersal can collectively influence invasion success.

19.
Commun Biol ; 1: 108, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271988

RESUMEN

Domestication is rife with episodes of interbreeding between cultured and wild populations, potentially challenging adaptive variation in the wild. In Atlantic salmon, Salmo salar, the number of domesticated individuals far exceeds wild individuals, and escape events occur regularly, yet evidence of the magnitude and geographic scale of interbreeding resulting from individual escape events is lacking. We screened juvenile Atlantic salmon using 95 single nucleotide polymorphisms following a single, large aquaculture escape in the Northwest Atlantic and report the landscape-scale detection of hybrid and feral salmon (27.1%, 17/18 rivers). Hybrids were reproductively viable, and observed at higher frequency in smaller wild populations. Repeated annual sampling of this cohort revealed decreases in the presence of hybrid and feral offspring over time. These results link previous observations of escaped salmon in rivers with reports of population genetic change, and demonstrate the potential negative consequences of escapes from net-pen aquaculture on wild populations.

20.
Evol Appl ; 11(6): 918-930, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29928300

RESUMEN

Individual assignment and genetic mixture analysis are commonly utilized in contemporary wildlife and fisheries management. Although microsatellite loci provide unparalleled numbers of alleles per locus, their use in assignment applications is increasingly limited. However, next-generation sequencing, in conjunction with novel bioinformatic tools, allows large numbers of microsatellite loci to be simultaneously genotyped, presenting new opportunities for individual assignment and genetic mixture analysis. Here, we scanned the published Atlantic salmon genome to identify 706 microsatellite loci, from which we developed a final panel of 101 microsatellites distributed across the genome (average 3.4 loci per chromosome). Using samples from 35 Atlantic salmon populations (n = 1,485 individuals) from coastal Labrador, Canada, a region characterized by low levels of differentiation in this species, this panel identified 844 alleles (average of 8.4 alleles per locus). Simulation-based evaluations of assignment and mixture identification accuracy revealed unprecedented resolution, clearly identifying 26 rivers or groups of rivers spanning 500 km of coastline. This baseline was used to examine the stock composition of 696 individuals harvested in the Labrador Atlantic salmon fishery and revealed that coastal fisheries largely targeted regional groups (<300 km). This work suggests that the development and application of large sequenced microsatellite panels presents great potential for stock resolution in Atlantic salmon and more broadly in other exploited anadromous and marine species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA