Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36983004

RESUMEN

Perinatal brain injury following hypoxia-ischemia (HI) is characterized by high mortality rates and long-term disabilities. Previously, we demonstrated that depletion of Annexin A1, an essential mediator in BBB integrity, was associated with a temporal loss of blood-brain barrier (BBB) integrity after HI. Since the molecular and cellular mechanisms mediating the impact of HI are not fully scrutinized, we aimed to gain mechanistic insight into the dynamics of essential BBB structures following global HI in relation to ANXA1 expression. Global HI was induced in instrumented preterm ovine fetuses by transient umbilical cord occlusion (UCO) or sham occlusion (control). BBB structures were assessed at 1, 3, or 7 days post-UCO by immunohistochemical analyses of ANXA1, laminin, collagen type IV, and PDGFRß for pericytes. Our study revealed that within 24 h after HI, cerebrovascular ANXA1 was depleted, which was followed by depletion of laminin and collagen type IV 3 days after HI. Seven days post-HI, increased pericyte coverage, laminin and collagen type IV expression were detected, indicating vascular remodeling. Our data demonstrate novel mechanistic insights into the loss of BBB integrity after HI, and effective strategies to restore BBB integrity should potentially be applied within 48 h after HI. ANXA1 has great therapeutic potential to target HI-driven brain injury.


Asunto(s)
Anexina A1 , Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Femenino , Embarazo , Animales , Ovinos , Humanos , Animales Recién Nacidos , Hipoxia-Isquemia Encefálica/metabolismo , Anexina A1/metabolismo , Laminina/metabolismo , Colágeno Tipo IV/metabolismo , Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo
2.
Pediatr Res ; 83(6): 1190-1199, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29741516

RESUMEN

BackgroundGeneral anesthetics could protect key neurotransmitter systems, such as the dopaminergic system, from hypoxic-ischemic encephalopathy (HIE) by limiting excessive glutamatergic neurotransmission. However, anesthetics may adversely affect inflammation and tau phosphorylation.MethodsA near-term sheep model of HIE by umbilical cord occlusion (UCO) under anesthesia was used. The effect of propofol and isoflurane on the dopaminergic neurotransmitter phenotype in the substantia nigra (SN) was studied using tyrosine hydroxylase immunohistochemistry. The overall microglial response and tau phosphorylation were also measured in the SN, surrounding the midbrain gray matter structures and the hippocampal white matter.ResultsThe isoflurane-treated UCO group had fewer tyrosine hydroxylase-expressing neurons in the SN at 8 h after the insult than the propofol-treated UCO or sham-operated groups (P<0.05). The microglial response was unchanged in the SN region. In the thalamus and the hippocampal stratum moleculare layer, the propofol-treated UCO group had a lower microglial response than the corresponding sham-operated group. Both UCO and the use of anesthetics additively increased tau phosphorylation in the SN region, thalamus, and hippocampus.ConclusionThe choice of anesthetics is important for an emergency C-section. Propofol could potentially protect the dopaminergic neurotransmitter phenotype within the SN at the cost of a widespread increase in tau phosphorylation.


Asunto(s)
Hipoxia-Isquemia Encefálica/metabolismo , Isoflurano/farmacología , Propofol/farmacología , Sustancia Negra/enzimología , Tirosina 3-Monooxigenasa/metabolismo , Proteínas tau/metabolismo , Anestésicos/farmacología , Animales , Animales Recién Nacidos , Mapeo Encefálico , Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Femenino , Glutamina/metabolismo , Hipocampo/metabolismo , Hipoxia/metabolismo , Inflamación , Masculino , Mesencéfalo/metabolismo , Microglía/metabolismo , Neurotransmisores/metabolismo , Fosforilación , Ovinos , Transmisión Sináptica , Cordón Umbilical/patología
3.
Am J Physiol Lung Cell Mol Physiol ; 310(1): L1-7, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26519206

RESUMEN

Chorioamnionitis, an inflammatory reaction of the fetal membranes to microbes, is an important cause of preterm birth and associated with inflammation-driven lung injury. However, inflammation in utero overcomes immaturity of the premature lung by inducing surfactant lipids and lung gas volume. Previously, we found that lipopolysaccharide (LPS)-induced chorioamnionitis resulted in pulmonary inflammation with increased effector T cells and decreased regulatory T cell (Treg) numbers. Because Tregs are crucial for immune regulation, we assessed the effects of interleukin (IL)-2-driven selective Treg expansion on the fetal lung in an ovine chorioamnionitis model. Instrumented fetuses received systemic prophylactic IL-2 treatment [118 days gestational age (dGA)] with or without subsequent exposure to intra-amniotic LPS (122 dGA). Following delivery at 129 dGA (term 147 dGA), pulmonary and systemic inflammation, morphological changes, lung gas volume, and phospholipid concentration were assessed. IL-2 pretreatment increased the FoxP3(+)/CD3(+) ratio, which was associated with reduced CD3-positive cells in the fetal lungs of LPS-exposed animals. Prophylactic IL-2 treatment did not prevent pulmonary accumulation of myeloperoxidase- and PU.1-positive cells or elevation of bronchoalveolar lavage fluid IL-8 and systemic IL-6 concentrations in LPS-exposed animals. Unexpectedly, IL-2 treatment improved fetal lung function of control lambs as indicated by increased disaturated phospholipids and improved lung gas volume. In conclusion, systemic IL-2 treatment in utero preferentially expanded Tregs and improved lung gas volume and disaturated phospholipids. These beneficial effects on lung function were maintained despite the moderate immunomodulatory effects of prophylactic IL-2 in the course of chorioamnionitis.


Asunto(s)
Corioamnionitis/tratamiento farmacológico , Feto/efectos de los fármacos , Interleucina-2/farmacología , Neumonía/tratamiento farmacológico , Animales , Femenino , Edad Gestacional , Lipopolisacáridos/farmacología , Neumonía/complicaciones , Neumonía/inmunología , Embarazo , Ovinos
4.
Mol Med ; 22: 244-257, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27257938

RESUMEN

Perinatal asphyxia, a condition of impaired gas exchange during birth, leads to fetal hypoxia-ischemia (HI) and is associated with postnatal adverse outcomes including intestinal dysmotility and necrotizing enterocolitis (NEC). Evidence from adult animal models of transient, locally-induced intestinal HI has shown that inflammation is essential in HI-induced injury of the gut. Importantly, mesenchymal stem cell (MSC) treatment prevented this HI-induced intestinal damage. We therefore assessed whether fetal global HI induced inflammation, injury and developmental changes in the gut and whether intravenous MSC administration ameliorated these HI-induced adverse intestinal effects. In a preclinical ovine model, fetuses were subjected to umbilical cord occlusion (UCO), with or without MSC treatment, and sacrificed 7 days after UCO. Global HI increased the number of myeloperoxidase positive cells in the mucosa, upregulated mRNA levels of interleukin (IL)-1ß and IL-17 in gut tissue and caused T-cell invasion in the intestinal muscle layer. Intestinal inflammation following global HI was associated with increased Ki67+ cells in the muscularis and subsequent muscle hyperplasia. Global HI caused distortion of glial fibrillary acidic protein immunoreactivity in the enteric glial cells and increased synaptophysin and serotonin expression in the myenteric ganglia. Intravenous MSC treatment did not ameliorate these HI-induced adverse intestinal events. Global HI resulted in intestinal inflammation and enteric nervous system abnormalities which are clinically associated with postnatal complications including feeding intolerance, altered gastrointestinal transit and NEC. The intestinal histopathological changes were not prevented by intravenous MSC treatment directly after HI, indicating that alternative treatment regimens for cell-based therapies should be explored.

5.
Pediatr Res ; 79(6): 907-15, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26866904

RESUMEN

BACKGROUND: Current methods for assessing perinatal hypoxic conditions did not improve infant outcomes. Various waveform-based and interval-based ECG markers have been suggested, but not directly compared. We compare performance of ECG markers in a standardized ovine model for fetal hypoxia. METHODS: Sixty-nine fetal sheep of 0.7 gestation had ECG recorded 4 h before, during, and 4 h after a 25-min period of umbilical cord occlusion (UCO), leading to severe hypoxia. Various ECG markers were calculated, among which were heart rate (HR), HR-corrected ventricular depolarization/repolarization interval (QTc), and ST-segment analysis (STAN) episodic and baseline rise markers, analogue to clinical STAN device alarms. Performance of interval- and waveform-based ECG markers was assessed by correlating predicted and actual hypoxic/normoxic state. RESULTS: Of the markers studied, HR and QTc demonstrated high sensitivity (≥86%), specificity (≥96%), and positive predictive value (PPV) (≥86%) and detected hypoxia in ≥90% of fetuses at 4 min after UCO. In contrast, STAN episodic and baseline rise markers displayed low sensitivity (≤20%) and could not detect severe fetal hypoxia in 65 and 28% of the animals, respectively. CONCLUSION: Interval-based HR and QTc markers could assess the presence of severe hypoxia. Waveform-based STAN episodic and baseline rise markers were ineffective as markers for hypoxia.


Asunto(s)
Electrocardiografía , Hipoxia/diagnóstico , Isquemia/diagnóstico , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Frecuencia Cardíaca , Concentración de Iones de Hidrógeno , Masculino , Curva ROC , Sensibilidad y Especificidad , Ovinos , Factores de Tiempo
6.
J Neuroinflammation ; 12: 241, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26700169

RESUMEN

BACKGROUND: Preterm infants are at risk for hypoxic-ischemic encephalopathy. No therapy exists to treat this brain injury and subsequent long-term sequelae. We have previously shown in a well-established pre-clinical model of global hypoxia-ischemia (HI) that mesenchymal stem cells are a promising candidate for the treatment of hypoxic-ischemic brain injury. In the current study, we investigated the neuroprotective capacity of multipotent adult progenitor cells (MAPC®), which are adherent bone marrow-derived cells of an earlier developmental stage than mesenchymal stem cells and exhibiting more potent anti-inflammatory and regenerative properties. METHODS: Instrumented preterm sheep fetuses were subjected to global hypoxia-ischemia by 25 min of umbilical cord occlusion at a gestational age of 106 (term ~147) days. During a 7-day reperfusion period, vital parameters (e.g., blood pressure and heart rate; baroreceptor reflex) and (amplitude-integrated) electroencephalogram were recorded. At the end of the experiment, the preterm brain was studied by histology. RESULTS: Systemic administration of MAPC therapy reduced the number and duration of seizures and prevented decrease in baroreflex sensitivity after global HI. In addition, MAPC cells prevented HI-induced microglial proliferation in the preterm brain. These anti-inflammatory effects were associated with MAPC-induced prevention of hypomyelination after global HI. Besides attenuation of the cerebral inflammatory response, our findings showed that MAPC cells modulated the peripheral splenic inflammatory response, which has been implicated in the etiology of hypoxic-ischemic injury in the preterm brain. CONCLUSIONS: In a pre-clinical animal model MAPC cell therapy improved the functional and structural outcome of the preterm brain after global HI. Future studies should establish the mechanism and long-term therapeutic effects of neuroprotection established by MAPC cells in the developing preterm brain exposed to HI. Our study may form the basis for future clinical trials, which will evaluate whether MAPC therapy is capable of reducing neurological sequelae in preterm infants with hypoxic-ischemic encephalopathy.


Asunto(s)
Células Madre Adultas/trasplante , Hipoxia-Isquemia Encefálica/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Nacimiento Prematuro , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Feto , Ovinos
7.
Pediatr Res ; 78(6): 664-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26322413

RESUMEN

BACKGROUND: Surfactant replacement therapy is the gold standard treatment of neonatal respiratory distress (RDS). Nebulization is a noninvasive mode of surfactant administration. We administered Poractant alfa (Curosurf) via a vibrating perforated membrane nebulizer (eFlow Neonatal Nebulizer) to spontaneously breathing preterm lambs during binasal continuous positive pressure ventilation (CPAP). METHODS: Sixteen preterm lambs were operatively delivered at a gestational age of 133 ± 1 d (term ~150 d), and connected to CPAP applied via customized nasal prongs. Nebulization was performed (i) with saline or (ii) with surfactant for 3 h in humidified or (iii) nonhumidified air, and with surfactant (iv) for 60 min or (v) for 30 min. We measured arterial oxygenation, lung gas volumes and surfactant pool size and deposition. RESULTS: Nebulization of surfactant in humidified air for 3 h improved oxygenation and lung function, and surfactant was preferentially distributed to the lower lung lobes. Shorter nebulization times and 3 h nebulization in dry air did not show these effects. Nebulized surfactant reached all lung lobes, however the increase of surfactant pool size missed statistical significance. CONCLUSION: Positive effects of surfactant nebulization to spontaneously breathing preterm lambs depend on treatment duration, surfactant dose, air humidity, and surfactant distribution within the lung.


Asunto(s)
Productos Biológicos/administración & dosificación , Presión de las Vías Aéreas Positiva Contínua , Pulmón/efectos de los fármacos , Membranas Artificiales , Nebulizadores y Vaporizadores , Fosfolípidos/administración & dosificación , Nacimiento Prematuro , Surfactantes Pulmonares/administración & dosificación , Respiración/efectos de los fármacos , Síndrome de Dificultad Respiratoria del Recién Nacido/terapia , Administración por Inhalación , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Diseño de Equipo , Edad Gestacional , Pulmón/fisiopatología , Síndrome de Dificultad Respiratoria del Recién Nacido/fisiopatología , Ovinos , Factores de Tiempo , Vibración
8.
Pediatr Res ; 77(1-1): 29-35, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25285474

RESUMEN

BACKGROUND: Intrauterine inflammation activates the fetal immune system and can result in organ injury and postnatal complications in preterm infants. As the spleen is an important site for peripheral immune activation, we asked how the fetal spleen would respond to intrauterine inflammation over time. We hypothesized that intraamniotic lipopolysaccharide (IA LPS) exposure induces acute and persistent changes in the splenic cytokine profile and T-cell composition that may contribute to the sustained fetal inflammatory response after chorioamnionitis. METHODS: Fetal sheep were exposed to IA LPS 5, 12, and 24 h and 2, 4, 8, or 15 d before delivery at 125 d of gestational age (term = 150 d). Splenic cytokine mRNA levels and cleaved caspase-3, CD3, and Foxp3 expression were evaluated. RESULTS: IA LPS increased interleukin (IL)1, IL4, IL5, and IL10 mRNA by twofold 24 h after injection. Interferon gamma increased by fivefold, whereas IL23 decreased 15 d post-LPS exposure. Cleaved caspase-3-positive cells increased 2 and 8 d after LPS exposure. CD3 immunoreactivity increased within 5 h with increased Foxp3-positive cells at 12 h. CONCLUSION: Intrauterine inflammation induced a rapid and sustained splenic immune response with persistent changes in the cytokine profile. This altered immune status may drive sustained inflammation and injury in other fetal organs.


Asunto(s)
Líquido Amniótico/metabolismo , Lipopolisacáridos/química , Bazo/inmunología , Líquido Amniótico/efectos de los fármacos , Animales , Apoptosis , Complejo CD3/metabolismo , Caspasa 3/metabolismo , Corioamnionitis/fisiopatología , Citocinas/metabolismo , Femenino , Feto/metabolismo , Edad Gestacional , Sistema Inmunológico , Inflamación , Interleucina-23/metabolismo , Modelos Animales , Embarazo , Preñez , ARN Mensajero/metabolismo , Ovinos , Bazo/metabolismo
9.
Pediatr Res ; 76(3): 261-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24956227

RESUMEN

BACKGROUND: Gut immaturity is linked with postnatal intestinal disorders. However, biomarkers to assess the intestinal developmental stage around birth are lacking. The aim of this study was to gain more insight on intestinal fatty acid-binding protein (I-FABP) as an indicator of gut maturity. METHODS: Antenatal I-FABP distribution and release was investigated in extremely premature, moderately premature, and term lambs, and these findings were verified in human urinary samples. Ileal I-FABP distribution was confirmed in autopsy material within 24 h postnatally. RESULTS: Median (range) serum I-FABP levels were lower in extremely premature lambs compared with moderately premature lambs (156 (50.0-427) vs. 385 (100-1,387) pg/ml; P = 0.02). Contrarily, median early postnatal urine I-FABP levels in human infants were higher in extremely premature compared with moderately premature and term neonates (1,219 (203-15,044) vs. 256 (50-1,453) and 328 (96-1,749) pg/ml; P = 0.008 and P = 0.04, respectively). I-FABP expression was most prominent in nonvacuolated enterocytes and increased with rising gestational age (GA) in ovine and human tissue samples. The epithelial distribution pattern changed from a phenotype displaying I-FABP-positive enterocytes merely in the crypts early in gestation into a phenotype with I-FABP expressing cells exclusively present in the villus tips at term in ovine and human tissue. CONCLUSION: In this ovine and human study, increasing GA is accompanied by an increase in I-FABP tissue content. Cord I-FABP levels correlate with gestation in ovine fetuses, identifying I-FABP as a marker for gut maturation. Raised postnatal urine I-FABP levels in preterm human infants may indicate intestinal injury and/or inflammation in utero.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Íleon/metabolismo , Mucosa Intestinal/metabolismo , Animales , Animales Recién Nacidos , Autopsia , Biomarcadores/metabolismo , Enterocitos/metabolismo , Proteínas de Unión a Ácidos Grasos/sangre , Proteínas de Unión a Ácidos Grasos/orina , Femenino , Sangre Fetal/metabolismo , Edad Gestacional , Humanos , Íleon/citología , Íleon/crecimiento & desarrollo , Recien Nacido Extremadamente Prematuro , Mucosa Intestinal/citología , Mucosa Intestinal/crecimiento & desarrollo , Masculino , Morfogénesis , Fenotipo , Nacimiento Prematuro , Ovinos
10.
Artif Organs ; 38(3): 208-14, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24147856

RESUMEN

The artificial placenta as a fascinating treatment alternative for neonatal lung failure has been the subject of clinical research for over 50 years. Pumpless systems have been in use since 1986. However, inappropriate dimensioning of commercially available oxygenators has wasted some of the theoretical advantages of this concept. Disproportional shunt fractions can cause congestive heart failure. Blood priming of large oxygenators and circuits dilutes fetal hemoglobin (as the superior oxygen carrier), is potentially infectious, and causes inflammatory reactions. Flow demands of large extracorporeal circuits require cannula sizes that are not appropriate for use in preterm infants. NeonatOx, a tailored low-volume oxygenator for this purpose, has proven the feasibility of this principle before. We now report the advances in biological performance of a refined version of this specialized oxygenator.


Asunto(s)
Órganos Artificiales , Oxigenación por Membrana Extracorpórea/instrumentación , Miniaturización , Placenta , Insuficiencia Respiratoria/terapia , Animales , Diseño de Equipo , Femenino , Humanos , Recien Nacido Prematuro , Modelos Animales , Embarazo , Ovinos
11.
J Neuroinflammation ; 10: 13, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23347579

RESUMEN

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is one of the most important causes of brain injury in preterm infants. Preterm HIE is predominantly caused by global hypoxia-ischemia (HI). In contrast, focal ischemia is most common in the adult brain and known to result in cerebral inflammation and activation of the peripheral immune system. These inflammatory responses are considered to play an important role in the adverse outcomes following brain ischemia. In this study, we hypothesize that cerebral and peripheral immune activation is also involved in preterm brain injury after global HI. METHODS: Preterm instrumented fetal sheep were exposed to 25 minutes of umbilical cord occlusion (UCO) (n = 8) at 0.7 gestation. Sham-treated animals (n = 8) were used as a control group. Brain sections were stained for ionized calcium binding adaptor molecule 1 (IBA-1) to investigate microglial proliferation and activation. The peripheral immune system was studied by assessment of circulating white blood cell counts, cellular changes of the spleen and influx of peripheral immune cells (MPO-positive neutrophils) into the brain. Pre-oligodendrocytes (preOLs) and myelin basic protein (MBP) were detected to determine white matter injury. Electro-encephalography (EEG) was recorded to assess functional impairment by interburst interval (IBI) length analysis. RESULTS: Global HI resulted in profound activation and proliferation of microglia in the hippocampus, periventricular and subcortical white matter. In addition, non-preferential mobilization of white blood cells into the circulation was observed within 1 day after global HI and a significant influx of neutrophils into the brain was detected 7 days after the global HI insult. Furthermore, global HI resulted in marked involution of the spleen, which could not be explained by increased splenic apoptosis. In concordance with cerebral inflammation, global HI induced severe brain atrophy, region-specific preOL vulnerability, hypomyelination and persistent suppressed brain function. CONCLUSIONS: Our data provided evidence that global HI in preterm ovine fetuses resulted in profound cerebral inflammation and mobilization of the peripheral innate immune system. These inflammatory responses were paralleled by marked injury and functional loss of the preterm brain. Further understanding of the interplay between preterm brain inflammation and activation of the peripheral immune system following global HI will contribute to the development of future therapeutic interventions in preterm HIE.


Asunto(s)
Encéfalo/inmunología , Encéfalo/patología , Movimiento Celular/inmunología , Hipoxia-Isquemia Encefálica/inmunología , Hipoxia-Isquemia Encefálica/patología , Animales , Animales Recién Nacidos , Femenino , Feto/inmunología , Feto/patología , Inmunidad Innata , Microglía/inmunología , Microglía/patología , Embarazo , Ovinos
12.
Pediatr Res ; 73(4 Pt 1): 427-34, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23329199

RESUMEN

BACKGROUND: Cardiac dysfunction is reported to occur after severe perinatal asphyxia. We hypothesized that anesthesia of the mother with propofol during emergency cesarean section (c-section) would result in less cardiac injury (troponin T) in preterm fetuses exposed to global severe asphyxia in utero than anesthesia with isoflurane. We tested whether propofol decreases the activity of proapoptotic caspase-3 by activating the antiapoptotic AKT kinase family and the signal transducer and activator of transcription-3 (STAT-3). METHODS: Pregnant ewes were randomized to receive either propofol or isoflurane anesthesia. A total of 44 late-preterm lambs were subjected to in utero umbilical cord occlusion (UCO), resulting in asphyxia and cardiac arrest, or sham treatment. After emergency c-section, each fetus was resuscitated, mechanically ventilated, and supported under anesthesia for 8 h using the same anesthetic as the one received by its mother. RESULTS: At 8 h after UCO, the fetuses whose mothers had received propofol anesthesia had lower plasma troponin T levels, and showed a trend toward a higher median left ventricular ejection fraction (LVEF) of 84% as compared with 74% for those whose mothers had received isoflurane. Postasphyxia activation of caspase-3 was lower in association with propofol anesthesia than with isoflurane. Postasphyxia levels of STAT-3 and the AKT kinase family rose 655% and 500%, respectively with the use of propofol anesthesia for the mother. CONCLUSION: The use of propofol for maternal anesthesia results in less cardiac injury in late-preterm lambs subjected to asphyxia than the use of isoflurane anesthesia. The underlying mechanism may be activation of the antiapoptotic STAT-3 and AKT pathways.


Asunto(s)
Anestésicos Intravenosos/administración & dosificación , Asfixia Neonatal/terapia , Cesárea , Paro Cardíaco/terapia , Miocardio/patología , Nacimiento Prematuro , Propofol/administración & dosificación , Disfunción Ventricular Izquierda/prevención & control , Anestésicos por Inhalación/administración & dosificación , Animales , Animales Recién Nacidos , Asfixia Neonatal/sangre , Asfixia Neonatal/fisiopatología , Biomarcadores/sangre , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Edad Gestacional , Paro Cardíaco/sangre , Paro Cardíaco/fisiopatología , Humanos , Recién Nacido , Isoflurano/administración & dosificación , Ligadura , Miocardio/metabolismo , Fosforilación , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Respiración Artificial , Resucitación , Factor de Transcripción STAT3/metabolismo , Ovinos , Volumen Sistólico/efectos de los fármacos , Factores de Tiempo , Troponina T/sangre , Ultrasonografía , Cordón Umbilical/cirugía , Disfunción Ventricular Izquierda/sangre , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos
13.
Pediatr Res ; 73(4 Pt 1): 420-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23340656

RESUMEN

BACKGROUND: The understanding of hypoxemia-induced changes in baroreflex function is limited and may be studied in a fetal sheep experiment before, during, and after standardized hypoxic conditions. METHODS: Preterm fetal lambs were instrumented at 102 d gestation (term: 146 d). At 106 d, intrauterine hypoxia--ischemia was induced by 25 min of umbilical cord occlusion (UCO). Baroreflex-related fluctuations were calculated at 30-min intervals during the first week after UCO by transfer function (cross-spectral) analysis between systolic blood pressure (SBP) and R-R interval fluctuations, estimated in the low-frequency (LF, 0.04-0.15 Hz) band. LF transfer gain (baroreflex sensitivity) and delay (s) reflect the baroreflex function. RESULTS: Baseline did not differ in LF transfer gain and delay between controls and the UCO group. In controls, LF gain showed postnatal increase. By contrast, LF gain gradually decreased in the UCO group, resulting in significantly lower values 4-7 d after UCO. In the UCO group, LF delay increased and differed significantly from controls. CONCLUSION: Our results show that intrauterine hypoxia-ischemia results in reduced baroreflex sensitivity over a period of 7 d, indicating limited efficacy to buffer BP changes by adapting heart rate. Cardiovascular dysregulation may augment already present cerebral damage after systemic hypoxia-ischemia in the reperfusion period.


Asunto(s)
Barorreflejo , Presión Sanguínea , Hipoxia Fetal/fisiopatología , Rotura Cardíaca , Hipoxia-Isquemia Encefálica/fisiopatología , Isquemia/fisiopatología , Nacimiento Prematuro , Adaptación Fisiológica , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Hipoxia Fetal/etiología , Edad Gestacional , Hipoxia-Isquemia Encefálica/etiología , Isquemia/etiología , Ligadura , Mecánica Respiratoria , Ovinos , Factores de Tiempo , Cordón Umbilical/cirugía
14.
Pediatr Res ; 74(1): 34-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23575875

RESUMEN

BACKGROUND: Sensorineural hearing loss (SNHL) is a common feature in the postasphyxial syndrome in newborns. Several anesthetic drugs have been proposed to attenuate secondary neuronal injury elicited by hypoxia-ischemia. We hypothesized that propofol anesthesia reduces auditory impairment after perinatal asphyxia in comparison with isoflurane. METHODS: Twenty-three pregnant ewes were randomized to propofol or isoflurane anesthesia and sedation. The lambs underwent in utero umbilical cord occlusion (isoflurane n = 5; propofol n = 7) and were compared with sham-treated animals (isoflurane n = 5; propofol n = 6) at a gestational age of 133 d. For 8 h after delivery by cesarean section, repeated auditory brainstem responses (ABRs) were recorded to obtain hearing thresholds, peak amplitudes, latencies, and interpeak latencies. RESULTS: Significantly elevated mean thresholds, diminished amplitudes, and elevated latencies were observed in the asphyxia group relative to the control group through the observation period. Comparison of anesthetic treatment in the asphyxia group revealed a significantly lower elevation in threshold and less impairment in the ABR amplitudes and latencies during propofol anesthesia as compared with isoflurane anesthesia. CONCLUSION: Our results support the hypothesis that anesthesia with propofol has a preventive effect on the functional changes to the auditory pathway in the event of perinatal asphyxia.


Asunto(s)
Anestésicos Intravenosos/administración & dosificación , Asfixia/fisiopatología , Vías Auditivas/efectos de los fármacos , Propofol/administración & dosificación , Anestésicos Intravenosos/farmacología , Animales , Femenino , Embarazo , Propofol/farmacología , Ovinos
15.
BMJ Open ; 13(3): e070729, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36931680

RESUMEN

INTRODUCTION: Early-onset fetal growth restriction (FGR) requires timely, often preterm, delivery to prevent fetal hypoxia causing stillbirth or neurologic impairment. Antenatal corticosteroids (CCS) administration reduces neonatal morbidity and mortality following preterm birth, most effectively when administered within 1 week preceding delivery. Optimal timing of CCS administration is challenging in early-onset FGR, as the exact onset and course of fetal hypoxia are unpredictable. International guidelines do not provide a directive on this topic. In the Netherlands, two timing strategies are commonly practiced: administration of CCS when the umbilical artery shows (A) a pulsatility index above the 95thh centile and (B) absent or reversed end-diastolic velocity (a more progressed disease state). This study aims to (1) use practice variation to compare CCS timing strategies in early-onset FGR on fetal and neonatal outcomes and (2) develop a dynamic tool to predict the time interval in days until delivery, as a novel timing strategy for antenatal CCS in early-onset FGR. METHODS AND ANALYSIS: A multicentre, retrospective cohort study will be performed including pregnancies complicated by early-onset FGR in six tertiary hospitals in the Netherlands in the period between 2012 and 2021 (estimated sample size n=1800). Main exclusion criteria are multiple pregnancies and fetal congenital or genetic abnormalities. Routinely collected data will be extracted from medical charts. Primary outcome for the comparison of the two CCS timing strategies is a composite of perinatal, neonatal and in-hospital mortality. Secondary outcomes include the COSGROVE core outcome set for FGR. A multivariable, mixed-effects model will be used to compare timing strategies on study outcomes. Primary outcome for the dynamic prediction tool is 'days until birth'. ETHICS AND DISSEMINATION: The need for ethical approval was waived by the Ethics Committee (University Medical Center Utrecht). Results will be published in open-access, peer-reviewed journals and disseminated by presentations at scientific conferences. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov: NCT05606497.


Asunto(s)
Retardo del Crecimiento Fetal , Nacimiento Prematuro , Embarazo , Recién Nacido , Humanos , Femenino , Estudios Retrospectivos , Hipoxia Fetal , Nacimiento Prematuro/prevención & control , Mortinato , Corticoesteroides , Ultrasonografía Prenatal , Edad Gestacional , Estudios Multicéntricos como Asunto
16.
Artif Organs ; 36(6): 512-6, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22309513

RESUMEN

The concept of an artificial placenta has been pursued in experimental research since the early 1960s. The principle has yet to be successfully implemented in neonatal care despite the constant evolution in extracorporeal life support technology and advancements in neonatal intensive care in general. For more than three decades, the physical dimensions of the required equipment necessitated pump-driven circuits; however, recent advances in oxygenator technology have allowed exploration of the simpler and physiologically preferable concept of pumpless arteriovenous oxygenation. We expect that further miniaturization of the extracorporeal circuit will allow the implementation of the concept into clinical application as an assist device. To this end, NeonatOx (Fig. 1), a custom-made miniaturized oxygenator with a filling volume of 20 mL, designed by our own group, has been successfully implemented with a preterm lamb model of less than 2000 g body weight as an assist device. We provide an overview of milestones in the history of extracorporeal membrane oxygenation of the preterm newborn juxtaposed against current and future technological advancements. Key limitations, which need to be addressed in order to make mechanical gas exchange a clinical treatment option of prematurity-related lung failure, are also identified.


Asunto(s)
Órganos Artificiales/historia , Oxigenación por Membrana Extracorpórea/historia , Recien Nacido Prematuro/fisiología , Placenta/fisiología , Animales , Cateterismo/historia , Oxigenación por Membrana Extracorpórea/instrumentación , Oxigenación por Membrana Extracorpórea/métodos , Femenino , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Recién Nacido , Embarazo
17.
Lancet Neurol ; 21(6): 528-536, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35568047

RESUMEN

BACKGROUND: Perinatal arterial ischaemic stroke (PAIS) is an important cause of neurodevelopmental disabilities. In this first-in-human study, we aimed to assess the feasibility and safety of intranasally delivered bone marrow-derived allogeneic mesenchymal stromal cells (MSCs) to treat PAIS in neonates. METHODS: In this open-label intervention study in collaboration with all neonatal intensive care units in the Netherlands, we included neonates born at full term (≥36 weeks of gestation) with MRI-confirmed PAIS in the middle cerebral artery region. All eligible patients were transferred to the neonatal intensive care unit of the Wilhelmina Children's Hospital. Neonates received one dose of 45-50 × 106 bone-marrow derived MSCs intranasally within 7 days of presenting signs of PAIS. The primary endpoints were acute and subacute safety outcomes, including vital signs, blood markers, and the occurrence of toxicity, adverse events, and serious adverse events. The occurrence of unexpected cerebral abnormalities by a repeat MRI at 3 months of age was a secondary endpoint. As part of standard clinical follow-up at Wilhelmina Children's Hospital, we assessed corticospinal tract development on MRI and performed motor assessments at 4 months of age. This study is registered with ClinicalTrials.gov, NCT03356821. FINDINGS: Between Feb 11, 2020, and April 29, 2021, ten neonates were enrolled in the study. Intranasal administration of MSCs was well tolerated in all ten neonates. No serious adverse events were observed. One adverse event was seen: a mild transient fever of 38°C without the need for clinical intervention. Blood inflammation markers (C-reactive protein, procalcitonin, and leukocyte count) were not significantly different pre-administration versus post-administration and, although thrombocyte levels increased (p=0·011), all were within the physiological range. Follow-up MRI scans did not show unexpected structural cerebral abnormalities. All ten patients had initial pre-Wallerian changes in the corticospinal tracts, but only four (40%) patients showed asymmetrical corticospinal tracts at follow-up MRI. Abnormal early motor assessment was found in three (30%) infants. INTERPRETATION: This first-in-human study demonstrates that intranasal bone marrow-derived MSC administration in neonates after PAIS is feasible and no serious adverse events were observed in patients followed up until 3 months of age. Future large-scale placebo-controlled studies are needed to determine the therapeutic effect of intranasal MSCs for PAIS. FUNDING: Netherlands Organization for Health Research and Development (ZonMw).


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Células Madre Mesenquimatosas , Accidente Cerebrovascular , Niño , Estudios de Factibilidad , Humanos , Lactante , Recién Nacido , Países Bajos , Investigación , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Resultado del Tratamiento
18.
Artif Organs ; 35(11): 997-1001, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21995519

RESUMEN

Gas exchange in premature neonates is regularly impaired by structural and functional immaturity of the lung. Mechanical ventilation, which is vitally important to sustain oxygenation and CO(2) elimination, causes, at the same time, mechanical and inflammatory destruction of lung tissue. To date, extracorporeal oxygenation is not a treatment option, one reason among others being the size of available oxygenators and cannulas. We hypothesized that a substantial improvement in gas exchange can be achieved by maintenance of the fetal cardiopulmonary bypass and interposition of a suitable passively driven (arteriovenous) membrane oxygenator. In close cooperation between engineers and neonatologists, we developed a miniaturized oxygenator and adapted cannulas to be used as a pumpless extracorporeal lung support that is connected to the circulation via cannulation of the umbilical cord vessels. First in vitro and in vivo studies show promising results. We regard this as one step on the way to clinical application of the artificial placenta.


Asunto(s)
Cateterismo/instrumentación , Oxigenación por Membrana Extracorpórea/instrumentación , Pulmón/fisiología , Oxigenadores , Cordón Umbilical/irrigación sanguínea , Animales , Monóxido de Carbono/metabolismo , Diseño de Equipo , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Oxígeno/metabolismo , Distribución Aleatoria , Ovinos
19.
Stem Cells Transl Med ; 10(1): 57-67, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32985793

RESUMEN

Involvement of the cerebellum in the pathophysiology of hypoxic-ischemic encephalopathy (HIE) in preterm infants is increasingly recognized. We aimed to assess the neuroprotective potential of intravenously administered multipotent adult progenitor cells (MAPCs) in the preterm cerebellum. Instrumented preterm ovine fetuses were subjected to transient global hypoxia-ischemia (HI) by 25 minutes of umbilical cord occlusion at 0.7 of gestation. After reperfusion, two doses of MAPCs were administered intravenously. MAPCs are a plastic adherent bone-marrow-derived population of adult progenitor cells with neuroprotective potency in experimental and clinical studies. Global HI caused marked cortical injury in the cerebellum, histologically indicated by disruption of cortical strata, impeded Purkinje cell development, and decreased dendritic arborization. Furthermore, global HI induced histopathological microgliosis, hypomyelination, and disruption of white matter organization. MAPC treatment significantly prevented cortical injury and region-specifically attenuated white matter injury in the cerebellum following global HI. Diffusion tensor imaging (DTI) detected HI-induced injury and MAPC neuroprotection in the preterm cerebellum. This study has demonstrated in a preclinical large animal model that early systemic MAPC therapy improved structural injury of the preterm cerebellum following global HI. Microstructural improvement was detectable with DTI. These findings support the potential of MAPC therapy for the treatment of HIE and the added clinical value of DTI for the detection of cerebellar injury and the evaluation of cell-based therapy.


Asunto(s)
Células Madre Adultas/trasplante , Asfixia , Cerebelo , Hipoxia-Isquemia Encefálica , Células Madre Multipotentes , Animales , Asfixia/terapia , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Feto , Humanos , Recién Nacido , Recien Nacido Prematuro , Células Madre Multipotentes/trasplante , Ovinos
20.
Front Pediatr ; 9: 617906, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34123958

RESUMEN

Chorioamnionitis is a major risk factor for preterm birth and an independent risk factor for postnatal morbidity for which currently successful therapies are lacking. Emerging evidence indicates that the timing and duration of intra-amniotic infections are crucial determinants for the stage of developmental injury at birth. Insight into the dynamical changes of organ injury after the onset of chorioamnionitis revealed novel therapeutic windows of opportunity. Importantly, successful development and implementation of therapies in clinical care is currently impeded by a lack of diagnostic tools for early (prenatal) detection and surveillance of intra-amniotic infections. In the current study we questioned whether an intra-amniotic infection could be accurately diagnosed by a specific volatile organic compound (VOC) profile in exhaled breath of pregnant sheep. For this purpose pregnant Texel ewes were inoculated intra-amniotically with Ureaplasma parvum and serial collections of exhaled breath were performed for 6 days. Ureaplasma parvum infection induced a distinct VOC-signature in expired breath of pregnant sheep that was significantly different between day 0 and 1 vs. day 5 and 6. Based on a profile of only 15 discriminatory volatiles, animals could correctly be classified as either infected (day 5 and 6) or not (day 0 and 1) with a sensitivity of 83% and a specificity of 71% and an area under the curve of 0.93. Chemical identification of these distinct VOCs revealed the presence of a lipid peroxidation marker nonanal and various hydrocarbons including n-undecane and n-dodecane. These data indicate that intra-amniotic infections can be detected by VOC analyses of exhaled breath and might provide insight into temporal dynamics of intra-amniotic infection and its underlying pathways. In particular, several of these volatiles are associated with enhanced oxidative stress and undecane and dodecane have been reported as predictive biomarker of spontaneous preterm birth in humans. Applying VOC analysis for the early detection of intra-amniotic infections will lead to appropriate surveillance of these high-risk pregnancies, thereby facilitating appropriate clinical course of action including early treatment of preventative measures for pre-maturity-associated morbidities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA