Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Sensors (Basel) ; 23(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37050435

RESUMEN

We present an integrated single-photon detection device custom designed for quantum key distribution (QKD) with time-bin encoded single photons. We implemented and demonstrated a prototype photon-to-digital converter (PDC) that integrates an 8 × 8 single-photon avalanche diode (SPAD) array with on-chip digital signal processing built in TSMC 65 nm CMOS. The prototype SPADs are used to validate the QKD functionalities with an array of time-to-digital converters (TDCs) to timestamp and process the photon detection events. The PDC uses window gating to reject noise counts and on-chip processing to sort the photon detections into respective time-bins. The PDC prototype achieved a 22.7 ps RMS timing resolution and demonstrated operation in a time-bin setup with 158 ps time-bins at an optical wavelength of 410 nm. This PDC can therefore be an important building block for a QKD receiver and enables compact and robust time-bin QKD systems with imaging detectors.

2.
Opt Express ; 29(20): 31348-31363, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615229

RESUMEN

We investigate the impact of fiber birefringence and spontaneous Raman scattering on the properties of photon pairs that are generated by the spontaneous four-wave mixing process in birefringent fibers. Starting from the formulation of the theory of four-wave mixing, we show a theoretical model for a generated optical field with the consideration of the Raman scattering and a Gaussian-distributed pump. The theoretical model is then applied for deriving the closed expressions of the photon-pair spectral properties as a function of the fiber birefringence. Also, with the modeled Raman gain, we evaluate the reduction of the pair production rate due to the presence of the Raman effect as well as the contributions of the Raman-scattered photons over a broad wavelength range. The predictions are experimentally verified with a commercial polarization-maintaining fiber.

3.
Opt Express ; 28(14): 20943-20953, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680144

RESUMEN

The Hong-Ou-Mandel (HOM) effect ranks among the most notable quantum interference phenomena, and is central to many applications in quantum technologies. The fundamental effect appears when two independent and indistinguishable photons are superimposed on a beam splitter, which achieves a complete suppression of coincidences between the two output ports. Much less studied, however, is when the fields share coherence (continuous-wave lasers) or mode envelope properties (pulsed lasers). In this case, we expect the existence of two distinct and concurrent HOM interference regimes: the traditional HOM dip on the coherence length time scale, and a structured HOM interference pattern on the pulse length scale. We develop a theoretical framework that describes HOM interference for laser fields having arbitrary temporal waveforms and only partial overlap in time. We observe structured HOM interference from a continuous-wave laser via fast polarization modulation and time-resolved single photon detection fast enough to resolve these structured HOM dips.

4.
Opt Express ; 27(12): 17369-17376, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252947

RESUMEN

A new implementation of a Mach-Zehnder interferometer is presented. Aimed at facilitating coherent optical wavelength conversion, the interferometer utilizes a novel double displacement technique that eliminates dispersion induced phase discrepancies between its input and output arms. To demonstrate the design, the interferometer was incorporated into a source of polarization entangled photon pairs. The source produced on average 2-3 million photon pairs per second per mW of pump power, the pairs emitted being maximally entangled in the polarization degree of freedom with a fidelity of ≥98%_. The new interferometer implementation is simple and robust and promises to become a design benchmark for polarization entangled photon sources.

5.
Opt Express ; 27(26): 37214-37223, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878505

RESUMEN

Despite its widespread use in fiber optics, encoding quantum information in photonic time-bin states is usually considered impractical for free-space quantum communication as turbulence-induced spatial distortion impedes the analysis of time-bin states at the receiver. Here, we demonstrate quantum key distribution using time-bin photonic states distorted by turbulence and depolarization during free-space transmission. Utilizing a novel analyzer apparatus, we observe stable quantum bit error ratios of 5.32 %, suitable for generating secure keys, despite significant wavefront distortions and polarization fluctuations across a 1.2 km channel. This shows the viability of time-bin quantum communication over long-distance free-space channels, which will simplify direct fiber/free-space interfaces and enable new approaches for practical free-space quantum communication over multi-mode, turbulent, or depolarizing channels.

6.
Opt Express ; 26(16): 21020-21032, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30119408

RESUMEN

Quantum key distribution (QKD) promises information theoretic secure key as long as the device performs as assumed in the theoretical model. One of the assumptions is an absence of information leakage about individual photon detection outcomes of the receiver unit. Here we investigate the information leakage from a QKD receiver due to photon emission caused by detection events in single-photon detectors (backflash). We test commercial silicon avalanche photodiodes and a photomultiplier tube, and find that the former emit backflashes. We study the spectral, timing and polarization characteristics of these backflash photons. We experimentally demonstrate on a free-space QKD receiver that an eavesdropper can distinguish which detector has clicked inside it, and thus acquire secret information. A set of countermeasures both in theory and on the physical devices are discussed.

7.
Nature ; 489(7415): 269-73, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22951967

RESUMEN

The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.

8.
Phys Rev Lett ; 118(15): 153602, 2017 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28452530

RESUMEN

Multiparticle quantum interference is critical for our understanding and exploitation of quantum information, and for fundamental tests of quantum mechanics. A remarkable example of multi-partite correlations is exhibited by the Greenberger-Horne-Zeilinger (GHZ) state. In a GHZ state, three particles are correlated while no pairwise correlation is found. The manifestation of these strong correlations in an interferometric setting has been studied theoretically since 1990 but no three-photon GHZ interferometer has been realized experimentally. Here we demonstrate three-photon interference that does not originate from two-photon or single photon interference. We observe phase-dependent variation of three-photon coincidences with (92.7±4.6)% visibility in a generalized Franson interferometer using energy-time entangled photon triplets. The demonstration of these strong correlations in an interferometric setting provides new avenues for multiphoton interferometry, fundamental tests of quantum mechanics, and quantum information applications in higher dimensions.

9.
Opt Express ; 24(18): 20947-55, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27607697

RESUMEN

Correlated photon pairs produced by a spontaneous parametric down conversion (SPDC) process can be used for secure quantum communication over long distances including free space transmission over a link through turbulent atmosphere. We experimentally investigate the possibility to utilize the intrinsic strong correlation between the pump and output photon spatial modes to mitigate the negative targeting effects of atmospheric beam wander. Our approach is based on a demonstration observing the deflection of the beam on a spatially resolved array of single photon avalanche diodes (SPAD-array).

10.
Phys Rev Lett ; 116(7): 070501, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26943519

RESUMEN

We present an implementation of photonic qubit precertification that performs the delicate task of detecting the presence of a flying photon without destroying its qubit state, allowing loss-sensitive quantum cryptography and tests of nonlocality even over long distance. By splitting an incoming single photon in two via parametric down-conversion, we herald the photon's arrival from an independent photon source while preserving its quantum information with up to (92.3±0.6)% fidelity. With reduced detector dark counts, precertification will be immediately useful in quantum communication.

11.
Nature ; 466(7306): 601-3, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20671705

RESUMEN

Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is spontaneous parametric down-conversion of laser light into photon pairs. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations that are used to produce two-photon entanglement in various degrees of freedom. It has been a longstanding goal in quantum optics to realize a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none has been technically feasible. Here we report the observation of photon triplets generated by cascaded down-conversion. Each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons in a way not achievable with independently created photon pairs. Our photon-triplet source will allow experimental interrogation of novel quantum correlations, the generation of tripartite entanglement without post-selection and the generation of heralded entangled photon pairs suitable for linear optical quantum computing. Two of the triplet photons have a wavelength matched for optimal transmission in optical fibres, suitable for three-party quantum communication. Furthermore, our results open interesting regimes of non-linear optics, as we observe spontaneous down-conversion pumped by single photons, an interaction also highly relevant to optical quantum computing.

12.
Proc Natl Acad Sci U S A ; 110(4): 1221-6, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23288900

RESUMEN

The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information (a particle feature) of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus, in principle, physical communications between choice and interference were not excluded. Here, we report a quantum eraser experiment in which, by enforcing Einstein locality, no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs, which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether.

13.
Opt Express ; 23(26): 33437-47, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26832008

RESUMEN

Technological realities limit terrestrial quantum key distribution (QKD) to single-link distances of a few hundred kilometers. One promising avenue for global-scale quantum communication networks is to use low-Earth-orbit satellites. Here we report the first demonstration of QKD from a stationary transmitter to a receiver platform traveling at an angular speed equivalent to a 600 km altitude satellite, located on a moving truck. We overcome the challenges of actively correcting beam pointing, photon polarization and time-of-flight. Our system generates an asymptotic secure key at 40 bits/s.

14.
Phys Rev Lett ; 115(25): 250402, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26722906

RESUMEN

We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

15.
Opt Lett ; 39(6): 1481-4, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24690818

RESUMEN

Spectrally correlated photon pairs can be used to improve the performance of long-range fiber-based quantum communication protocols. We present a source based on spontaneous parametric downconversion, which allows one to control spectral correlations within the entangled photon pair without spectral filtering by changing the pump-pulse duration or the characteristics of the coupled spatial modes. The spectral correlations and polarization entanglement are characterized. We find that the generated photon pairs can feature both positive spectral correlations, decorrelation, or negative correlations at the same time as polarization entanglement with a high fidelity of 0.97 (no background subtraction) with the expected Bell state.

16.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639580

RESUMEN

InGaAs/InP-based negative-feedback avalanche diodes (NFADs) have been demonstrated to be an excellent option for photon detection at telecom wavelengths in quantum communication applications, where photon arrival times are random. However, it is well-known that the operation of NFADs at low temperatures (193 K or below) is crucial to minimize the effects of afterpulsing and high dark count rates (DCRs). In this work, we present a new versatile readout electronics system with active afterpulse suppression that also offers flexible cooling options. Through the characterization of two NFAD detectors from Princeton Lightwave, Inc. and a thorough evaluation of our electronics' performance under various operating conditions, we demonstrate the effectiveness of this readout system in improving the performance of NFAD-based photon detectors. At the optimal bias for NFADs, our electronics were able to significantly reduce the afterpulsing probability by a factor of 200 for dead times ranging from 5 to 20 µs following each detection event. This helps to keep the total DCRs at around 100 counts per second or less for a 20 µs hold-off time. The versatility of our detection system makes NFADs a cost-effective alternative to more complex detectors, such as superconducting nanowire single-photon detectors, in the research of long-distance quantum communications and low-noise single photon detectors at telecommunication wavelengths.

17.
Pac Symp Biocomput ; 29: 291-305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160287

RESUMEN

Assembling an "integrated structural map of the human cell" at atomic resolution will require a complete set of all human protein structures available for interaction with other biomolecules - the human protein structure targetome - and a pipeline of automated tools that allow quantitative analysis of millions of protein-ligand interactions. Toward this goal, we here describe the creation of a curated database of experimentally determined human protein structures. Starting with the sequences of 20,422 human proteins, we selected the most representative structure for each protein (if available) from the protein database (PDB), ranking structures by coverage of sequence by structure, depth (the difference between the final and initial residue number of each chain), resolution, and experimental method used to determine the structure. To enable expansion into an entire human targetome, we docked small molecule ligands to our curated set of protein structures. Using design constraints derived from comparing structure assembly and ligand docking results obtained with challenging protein examples, we here propose to combine this curated database of experimental structures with AlphaFold predictions and multi-domain assembly using DEMO2 in the future. To demonstrate the utility of our curated database in identification of the human protein structure targetome, we used docking with AutoDock Vina and created tools for automated analysis of affinity and binding site locations of the thousands of protein-ligand prediction results. The resulting human targetome, which can be updated and expanded with an evolving curated database and increasing numbers of ligands, is a valuable addition to the growing toolkit of structural bioinformatics.


Asunto(s)
Biología Computacional , Proteínas , Humanos , Ligandos , Proteínas/química , Sitios de Unión , Unión Proteica , Bases de Datos de Proteínas
18.
Opt Express ; 21(5): 6205-12, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23482189

RESUMEN

We demonstrate a novel polarization-entangled photon-pair source based on standard birefringent polarization-maintaining optical fiber. The source consists of two stretches of fiber spliced together with perpendicular polarization axes, and has the potential to be fully fiber-based, with all bulk optics replaced with in-fiber equivalents. By modelling the temporal walk-off in the fibers, we implement compensation necessary for the photon creation processes in the two stretches of fiber to be indistinguishable. Our source subsequently produces a high quality entangled state having (92.2 ± 0.2) % fidelity with a maximally entangled Bell state.

19.
Opt Express ; 21(10): 11943-51, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23736416

RESUMEN

We demonstrate a compact, robust, and highly efficient source of polarization-entangled photons, based on linear bi-directional down-conversion in a novel 'folded sandwich' configuration. Bi-directionally pumping a single periodically poled KTiOPO(4) (ppKTP) crystal with a 405-nm laser diode, we generate entangled photon pairs at the non-degenerate wavelengths 784 nm (signal) and 839 nm (idler), and achieve an unprecedented detection rate of 11.8 kcps for 10.4 µW of pump power (1.1 million pairs / mW), in a 2.9-nm bandwidth, while maintaining a very high two-photon entanglement quality, with a Bell-state fidelity of 99.3 ± 0.3%.


Asunto(s)
Láseres de Estado Sólido , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Modelos Lineales , Fotones
20.
Opt Lett ; 38(5): 697-9, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23455269

RESUMEN

Frequency correlation (or decorrelation) of photon pairs is of great importance in long-range quantum communications and photonic quantum computing. We experimentally characterize a spontaneous parametric downconversion source, based on a ß-barium borate crystal cut for type-II phase matching at 1550 nm, which has the capability to emit photons with positive or no spectral correlations. Our system employs a carefully designed detection method exploiting two InGaAs detectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA