Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Hum Mol Genet ; 32(12): 2068-2083, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36920509

RESUMEN

In humans, mutations in calmodulin cause cardiac arrhythmia. These mutations disrupt the ability of calmodulin to sense calcium concentrations and correctly regulate two central calcium channels, together obstructing heart rhythm. This correlation is well established, but also surprising since calmodulin is expressed in all tissues and interacts with hundreds of proteins. Until now, most studies have focused on cardiac cell function and regulation of specific cardiac targets, and thus, potential other effects of these mutations have largely been unexplored. Here, we introduce the nematode Caenorhabditis elegans as an in vivo model to study effects of three human calmodulin mutations with different impairment on calcium binding. We find that arrhythmic effects of the calmodulin mutations N54I and D96V can be recapitulated in disruption of two rhythmic behaviors, pharynx pumping and defecation motor program. Interestingly, we also find that these mutations affect neuronal function, but in different ways. Whereas D96V sensitizes signaling at the neuromuscular junction, N54I has a protective effect. The mutation N98S did not affect rhythmic behavior, but impaired chemosensing. Therefore, pathogenic calmodulin mutations act through different mechanisms in rhythmic behavior and neuronal function in C. elegans, emphasizing the strength of using live multicellular models. Finally, our results support the hypothesis that human calmodulin mutations could also contribute to neurological diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Calmodulina , Animales , Humanos , Calmodulina/genética , Calmodulina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Arritmias Cardíacas/metabolismo , Mutación , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
2.
FASEB J ; 33(6): 6980-6994, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30840830

RESUMEN

Plasticity of epithelial cell-cell adhesion is vital in epithelial homeostasis and is regulated in multiple processes associated with cell migration, such as embryogenesis and wound healing. In cancer, cell-cell adhesion is compromised and is associated with increased cell migration and metastasis. Aquaporin (AQP) water channels facilitate water transport across cell membranes and are essential in the regulation of body water homeostasis. Increased expression of several AQPs, especially AQP5, is associated with increased cancer cell migration, metastasis, and poor prognosis. We found that AQP5 overexpression in normal epithelial cells induced cell detachment and dissemination from migrating cell sheets. AQP5 reduced both cell-cell coordination during collective migration and overall distance covered by the migrating cell sheets. AQP5 and the isoforms AQP1 and AQP4 decreased, whereas AQP3 increased, levels of plasma membrane-associated lateral junctional proteins. This regulation was mediated by the cytoplasmic domains of the AQPs. This shows that the AQPs have dual functions in epithelial physiology: as channel proteins and as differential regulators of cell-cell adhesiveness. This regulation may contribute to dynamic regulation of cell junctions in processes such as embryogenesis and wound healing and also explain the pivotal roles of AQPs in carcinogenesis and metastasis.-Login, F. H., Jensen, H. H., Pedersen, G. A., Koffman, J. S., Kwon, T.-H., Parsons, M., Nejsum, L. N. Aquaporins differentially regulate cell-cell adhesion in MDCK cells.


Asunto(s)
Acuaporinas/metabolismo , Adhesión Celular/fisiología , Animales , Acuaporinas/genética , Moléculas de Adhesión Celular , Membrana Celular , Perros , Regulación de la Expresión Génica , Células de Riñón Canino Madin Darby
3.
Nano Lett ; 19(2): 699-707, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30584808

RESUMEN

Several aquaporin (AQP) water channels are short-term regulated by the messenger cyclic adenosine monophosphate (cAMP), including AQP3. Bulk measurements show that cAMP can change diffusive properties of AQP3; however, it remains unknown how elevated cAMP affects AQP3 organization at the nanoscale. Here we analyzed AQP3 nano-organization following cAMP stimulation using photoactivated localization microscopy (PALM) of fixed cells combined with pair correlation analysis. Moreover, in live cells, we combined PALM acquisitions of single fluorophores with single-particle tracking (spt-PALM). These analyses revealed that AQP3 tends to cluster and that the diffusive mobility is confined to nanodomains with radii of ∼150 nm. This domain size increases by ∼30% upon elevation of cAMP, which, however, is not accompanied by a significant increase in the confined diffusion coefficient. This regulation of AQP3 organization at the nanoscale may be important for understanding the mechanisms of water AQP3-mediated water transport across plasma membranes.


Asunto(s)
Acuaporina 3/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Células Epiteliales/metabolismo , Animales , Acuaporina 3/análisis , Membrana Celular/ultraestructura , Difusión , Perros , Células Epiteliales/ultraestructura , Células de Riñón Canino Madin Darby , Microscopía Fluorescente/métodos , Procesos Fotoquímicos
4.
J Physiol ; 597(3): 849-867, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30471113

RESUMEN

KEY POINTS: Exogenous Na+ /H+ exchanger 1 (NHE1) expression stimulated the collective migration of epithelial cell sheets Stimulation with epidermal growth factor, a key morphogen, primarily increased migration of the front row of cells, whereas NHE1 increased that of submarginal cell rows, and the two stimuli were additive Accordingly, NHE1 localized not only to the leading edges of leader cells, but also in cryptic lamellipodia in submarginal cell rows NHE1 expression disrupted the morphology of epithelial cell sheets and three-dimensional cysts ABSTRACT: Collective cell migration plays essential roles in embryonic development, in normal epithelial repair processes, and in many diseases including cancer. The Na+ /H+ exchanger 1 (NHE1, SLC9A1) is an important regulator of motility in many cells and has been widely studied for its roles in cancer, although its possible role in collective migration of normal epithelial cells has remained unresolved. In the present study, we show that NHE1 expression in MDCK-II kidney epithelial cells accelerated collective cell migration. NHE1 localized to the leading edges of leader cells, as well as to cryptic lamellipodia in submarginal cell rows. Epidermal growth factor, a kidney morphogen, increased displacement of the front row of collectively migrating cells and reduced the number of migration fingers. NHE1 expression increased the number of migration fingers and increased displacement of submarginal cell rows, resulting in additive effects of NHE1 and epidermal growth factor. Finally, NHE1 expression resulted in disorganized development of MDCK-II cell cysts. Thus, NHE1 contributes to collective migration and epithelial morphogenesis, suggesting roles for the transporter in embryonic and early postnatal development.


Asunto(s)
Movimiento Celular/fisiología , Células Epiteliales/metabolismo , Seudópodos/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Animales , Línea Celular , Perros , Desarrollo Embrionario/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Células de Riñón Canino Madin Darby
5.
FASEB J ; : fj201800651, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29920220

RESUMEN

Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

6.
Am J Physiol Cell Physiol ; 314(6): C654-C661, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29384694

RESUMEN

Aquaporin-5 (AQP5) is a plasma membrane water channel mainly expressed in secretory glands. Increased expression of AQP5 is observed in multiple cancers, including breast cancer, where high expression correlates with the degree of metastasis and poor prognosis. Moreover, studies in cancer cells have suggested that AQP5 activates Ras signaling, drives morphological changes, and in particular increased invasiveness. To design intervention strategies, it is of utmost importance to characterize and dissect the cell biological changes induced by altered AQP5 expression. To isolate the effect of AQP5 overexpression from the cancer background, AQP5 was overexpressed in normal epithelial MDCK cells which have no endogenous AQP5 expression. AQP5 overexpression promoted actin stress fiber formation and lamellipodia dynamics. Moreover, AQP5 decreased cell circularity. Phosphorylation of AQP5 on serine 156 in the second intracellular loop has been shown to activate the Ras pathway. When serine 156 was mutated to alanine to mimic the nonphosphorylated state, the decrease in cell circularity was reversed, indicating that the AQP5-Ras axis is involved in the effect on cell shape. Interestingly, the cellular changes mediated by AQP5 were not associated with induction of epithelial-to-mesenchymal transition. Thus, AQP5 may contribute to cancer by altering cellular morphology and actin organization, which increase the metastatic potential.


Asunto(s)
Actinas/metabolismo , Acuaporina 5/metabolismo , Forma de la Célula , Transformación Celular Neoplásica/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Fibras de Estrés/metabolismo , Animales , Acuaporina 5/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Perros , Células Epiteliales/patología , Células de Riñón Canino Madin Darby , Mutación , Fosforilación , Seudópodos/metabolismo , Seudópodos/patología , Serina , Transducción de Señal , Factores de Tiempo , Transfección , Regulación hacia Arriba
7.
Biochem Biophys Res Commun ; 493(3): 1210-1216, 2017 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-28958942

RESUMEN

Aberrant levels of aquaporin-5 (AQP5) expression have been observed in several types of cancer, including breast cancer, where AQP5 overexpression is associated with metastasis and poor prognosis. In cultured cancer cells, AQP5 facilitates cell migration and activates Ras signaling. Both increased cell migration and Ras activation are associated with cancer metastasis, but so far it is unknown if AQP5 also affects these processes in vivo. Therefore, we investigated if high AQP5 expression in breast cancer tissue correlated with increased activation of Ras and of Rac1, which is a GTPase also involved in cell migration. This was accomplished by immunohistochemical analysis of invasive ductal carcinoma of breast tissue sections from human patients, followed by qualitative and quantitative correlation analysis between AQP5 and activated Ras and Rac1. Immunohistochemistry revealed that activation of Ras and Rac1 was positively correlated. There was, however, no correlation between high AQP5 expression and activation of Ras, whereas a nonsignificant, but positive, tendency between the levels of AQP5 and activated Rac1 levels was observed. In summary, this is the first report that correlates AQP5 expression levels to downstream signaling partners in breast cancer tissue sections. The results suggest Rac1 as a potential downstream signaling partner of AQP5 in vivo.


Asunto(s)
Acuaporina 5/metabolismo , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas ras/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Femenino , Humanos , Inmunohistoquímica , Transducción de Señal
8.
Int J Mol Sci ; 18(10)2017 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-28991174

RESUMEN

Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a pivotal role in cancer metastasis. AQP3 knockout mice were resistant to skin tumor formation and overexpression correlated with metastasis and poor prognosis in patients with breast or gastric cancer. In cultured cancer cells, increased AQP3 expression stimulated several intracellular signaling pathways and resulted in increased cell proliferation, migration, and invasion as well as aggravation of epithelial-to-mesenchymal transition. Besides AQP facilitated water transport at the leading edge of migrating cells, AQP3 signaling mechanisms are beginning to be unraveled. Here, we give a thorough review of current knowledge regarding AQP3 expression in cancer and how AQP3 contributes to cancer progression via signaling that modulates cellular mechanisms. This review article will expand our understanding of the known pathophysiological findings regarding AQP3 in cancer.


Asunto(s)
Acuaporina 3/metabolismo , Animales , Acuaporina 3/genética , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Humanos
9.
Biochim Biophys Acta Mol Cell Res ; 1868(6): 118999, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33711364

RESUMEN

The first junior European Calcium Society online meeting, held October 20-21, 2020, aimed to promote junior researchers in the Ca2+ community. The meeting included four scientific sessions, covering Ca2+ research from molecular detail to whole organisms. Each session featured one invited speaker and three speakers selected based on submitted abstracts, with the overall aim of actively involving early-career researchers. Consequently, the meeting underlined the diversity of Ca2+ physiology, by showcasing research across scales and Kingdoms, as presented by a correspondingly diverse speaker panel across career stages and countries. In this meeting report, we introduce the visions of the junior European Calcium Society board and summarize the meeting content.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Humanos , Competencia Profesional , Proyectos de Investigación
10.
Neural Regen Res ; 19(5): 943-944, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37862180
11.
Front Mol Neurosci ; 11: 396, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483049

RESUMEN

Fluxes of calcium (Ca2+) across cell membranes enable fast cellular responses. Calmodulin (CaM) senses local changes in Ca2+ concentration and relays the information to numerous interaction partners. The critical role of accurate Ca2+ signaling on cellular function is underscored by the fact that there are three independent CaM genes (CALM1-3) in the human genome. All three genes are functional and encode the exact same CaM protein. Moreover, CaM has a completely conserved amino acid sequence across all vertebrates. Given this degree of conservation, it was long thought that mutations in CaM were incompatible with life. It was therefore a big surprise when the first CaM mutations in humans were identified six years ago. Today, more than a dozen human CaM missense mutations have been described, all found in patients with severe cardiac arrhythmias. Biochemical studies have demonstrated differential effects on Ca2+ binding affinities for these CaM variants. Moreover, CaM regulation of central cardiac ion channels is impaired, including the voltage-gated Ca2+ channel, CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor isoform 2, RyR2. Currently, no non-cardiac phenotypes have been described for CaM variant carriers. However, sequencing of large human cohorts reveals a cumulative frequency of additional rare CaM mutations that raise the possibility of CaM variants not exclusively causing severe cardiac arrhythmias. Here, we provide an overview of the identified CaM variants and their known consequences for target regulation and cardiac disease phenotype. We discuss experimental data, patient genotypes and phenotypes as well as which questions remain open to understand this complexity.

12.
J Microbiol Methods ; 139: 37-44, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28477900

RESUMEN

To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple bacterial isolates. This will be a powerful experimental tool facilitating the study of bacterial invasion, drug resistance, and the development of new therapeutics.


Asunto(s)
Citoplasma/microbiología , Ensayos Analíticos de Alto Rendimiento/métodos , Microscopía/instrumentación , Microscopía/métodos , Escherichia coli Uropatógena/crecimiento & desarrollo , Animales , Automatización , Recuento de Colonia Microbiana/métodos , Citoplasma/ultraestructura , Células Epiteliales/microbiología , Células Epiteliales/ultraestructura , Gentamicinas/farmacología , Proteínas Fluorescentes Verdes/genética , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Riñón/citología , Riñón/microbiología , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/ultraestructura
13.
Data Brief ; 14: 643-647, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28913393

RESUMEN

Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacterial colonies in infected host cells (Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy, Ernstsen et al., 2017 [1]). The infected cells were imaged with a 10× objective and number of intracellular bacterial colonies, their size distribution and the number of cell nuclei were automatically quantified using a spot detection-tool. The spot detection-output was exported to Excel, where data analysis was performed. In this article, micrographs and spot detection data are made available to facilitate implementation of the method.

14.
PLoS One ; 12(6): e0179122, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28636623

RESUMEN

Foodborne Enteropathogenic Escherichia coli (EPEC) infections of the small intestine cause diarrhea especially in children and are a major cause of childhood death in developing countries. EPEC infects the apical membrane of the epithelium of the small intestine by attaching, effacing the microvilli under the bacteria and then forming microcolonies on the cell surface. We first asked the question where on epithelial cells EPEC attaches and grows. Using models of polarized epithelial monolayers, we evaluated the sites of initial EPEC attachment to the apical membrane and found that EPEC preferentially attached over the cell-cell junctions and formed microcolonies preferentially where three cells come together at tricellular tight junctions. The ability of EPEC to adhere increased when host cell polarity was compromised yielding EPEC access to basolateral proteins. EPEC pedestals contain basolateral cytoskeletal proteins. Thus, we asked if attached EPEC causes reorganization the protein composition of the host cell plasma membrane at sites of microcolony formation. We found that EPEC microcolony growth at the apical membrane resulted in a local accumulation of basolateral plasma membrane proteins surrounding the microcolony. Basolateral marker protein aquaporin-3 localized to forming EPEC microcolonies. Components of the basolateral vesicle targeting machinery were re-routed. The Exocyst (Exo70) was recruited to individual EPEC as was the basolateral vesicle SNARE VAMP-3. Moreover, several Rab variants were also recruited to the infection site, and their dominant-negative equivalents were not. To quantitatively study the recruitment of basolateral proteins, we created a pulse of the temperature sensitive basolateral VSVG, VSVG3-SP-GFP, from the trans-Golgi Network. We found that after release from the TGN, significantly more VSVG3-SP-GFP accumulated at the site of microcolony growth than on equivalent membrane regions of uninfected cells. This suggests that trafficking of vesicles destined for the basolateral membrane are redirected to the apical site of microcolony growth. Thus, in addition to disrupting host cell fence function, local host cell plasma membrane protein composition is changed by altered protein trafficking and recruitment of basolateral proteins to the apical microcolony. This may aid EPEC attachment and subsequent microcolony growth.


Asunto(s)
Membrana Celular/metabolismo , Escherichia coli Enteropatógena/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Red trans-Golgi/metabolismo , Animales , Adhesión Bacteriana , Membrana Celular/microbiología , Polaridad Celular , Perros , Escherichia coli Enteropatógena/crecimiento & desarrollo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Células de Riñón Canino Madin Darby , Transporte de Proteínas
15.
Int J Biochem Cell Biol ; 79: 271-276, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27609140

RESUMEN

Emerging data identifies the water channel aquaporin-5 as a major player in multiple cancers. Over-expression of aquaporin-5 has been associated with increased metastasis and poor prognosis, suggesting that aquaporin-5 may enhance cancer cell migration. This review aims to highlight the current knowledge and hypothesis regarding downstream signaling partners of aquaporin-5 in relation to cancer cell migration. The molecular mechanisms that link aquaporin-5 to cell migration are not completely understood. Aquaporin-5 may promote cell movement by increasing water uptake into the front of the cell allowing local swelling. Aquaporin-5 may also activate extracellular-regulated kinases, increasing proliferation and potentially stimulating the migration machinery. Thus, further studies are warranted to identify the underlying mechanisms and signaling pathways. This will reveal whether aquaporin-5 and downstream effectors could be targets for developing new cancer therapeutics.


Asunto(s)
Acuaporina 5/metabolismo , Movimiento Celular , Neoplasias/metabolismo , Neoplasias/patología , Animales , Acuaporina 5/química , Humanos , Transporte de Proteínas , Transducción de Señal
16.
Mol Endocrinol ; 30(7): 693-708, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27176613

RESUMEN

Prolactin (PRL) and its receptor (PRLR) are implicated in breast cancer invasiveness, although their exact roles remain controversial. The Na(+)/H(+) exchanger (NHE1) plays essential roles in cancer cell motility and invasiveness, but the PRLR and NHE1 have not previously been linked. Here we show that in T47D human breast cancer cells, which express high levels of PRLR and NHE1, exposure to PRL led to the activation of Janus kinase-2 (JAK2)/signal transducer and activator of transcription-5 (STAT5), Akt, and ERK1/2 signaling and the rapid formation of peripheral membrane ruffles, known to be associated with cell motility. NHE1 was present in small ruffles prior to PRL treatment and was further recruited to the larger, more dynamic ruffles induced by PRL exposure. In PRL-induced ruffles, NHE1 colocalized with activated Akt, ERK1/2, and the ERK effector p90Ribosomal S kinase (p90RSK), known regulators of NHE1 activity. Stimulation of T47D cells with PRL augmented p90RSK activation, Ser703-phosphorylation of NHE1, NHE1-dependent intracellular pH recovery, pericellular acidification, and NHE1-dependent invasiveness. NHE1 activity and localization to ruffles were attenuated by the inhibition of Akt and/or ERK1/2. In contrast, noncancerous MCF10A breast epithelial cells expressed NHE1 and PRLR at lower levels than T47D cells, and their stimulation with PRL induced neither NHE1 activation nor NHE1-dependent invasiveness. In conclusion, we show for the first time that PRLR activation stimulates breast cancer cell invasiveness via the activation of NHE1. We propose that PRL-induced NHE1 activation and the resulting NHE1-dependent invasiveness may contribute to the metastatic behavior of human breast cancer cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Prolactina/farmacología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Intercambiador 1 de Sodio-Hidrógeno/genética
17.
PLoS One ; 10(11): e0141871, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26536015

RESUMEN

Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that infects the epithelial lining of the small intestine and causes diarrhea. Upon attachment to the intestinal epithelium, EPEC uses a Type III Secretion System to inject its own high affinity receptor Translocated intimin receptor (Tir) into the host cell. Tir facilitates tight adhesion and recruitment of actin-regulating proteins leading to formation of an actin pedestal beneath the infecting bacterium. The pedestal has several similarities with podosomes, which are basolateral actin-rich extensions found in some migrating animal cells. Formation of podosomes is dependent upon the early podosome-specific scavenger protein Tks5, which is involved in actin recruitment. Although Tks5 is expressed in epithelial cells, and podosomes and EPEC pedestals share many components in their structure and mechanism of formation, the potential role of Tks5 in EPEC infections has not been studied. The aim of this study was to determine the subcellular localization of Tks5 in epithelial cells and to investigate if Tks5 is recruited to the EPEC pedestal. In an epithelial MDCK cell line stably expressing Tks5-EGFP, Tks5 localized to actin bundles. Upon infection, EPEC recruited Tks5-EGFP. Tir, but not Tir phosphorylation was essential for the recruitment. Time-lapse microscopy revealed that Tks5-EGFP was recruited instantly upon EPEC attachment to host cells, simultaneously with actin and N-WASp. EPEC infection of cells expressing a ΔPX-Tks5 deletion version of Tks5 showed that EPEC was able to both infect and form pedestals when the PX domain was deleted from Tks5. Future investigations will clarify the role of Tks5 in EPEC infection and pedestal formation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Podosomas/metabolismo , Receptores de Superficie Celular/metabolismo , Actinas/química , Actinas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Línea Celular , Perros , Genes Reporteros , Células de Riñón Canino Madin Darby , Ratones , Microscopía Fluorescente , Fosforilación , Estructura Terciaria de Proteína , Imagen de Lapso de Tiempo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA