Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(15): 5682-7, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706805

RESUMEN

Therapy resistance is a major limitation to the successful treatment of cancer. Here, we identify Bcl2-like 13 (Bcl2L13), an atypical member of the Bcl-2 family, as a therapy susceptibility gene with elevated expression in solid and blood cancers, including glioblastoma (GBM). We demonstrate that mitochondria-associated Bcl2L13 inhibits apoptosis induced by a wide spectrum of chemo- and targeted therapies upstream of Bcl2-associated X protein activation and mitochondrial outer membrane permeabilization in vitro and promotes GBM tumor growth in vivo. Mechanistically, Bcl2L13 binds to proapoptotic ceramide synthases 2 (CerS2) and 6 (CerS6) via a unique C-terminal 250-aa sequence located between its Bcl-2 homology and membrane anchor domains and blocks homo- and heteromeric CerS2/6 complex formation and activity. Correspondingly, CerS2/6 activity and Bcl2L13 abundance are inversely correlated in GBM tumors. Thus, our genetic and functional studies identify Bcl2L13 as a regulator of therapy susceptibility and point to the Bcl2L13-CerS axis as a promising target to enhance responses of therapy-refractory cancers toward conventional and targeted regimens currently in clinical use.


Asunto(s)
Resistencia a Medicamentos/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Glioblastoma/enzimología , Oxidorreductasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Clonación Molecular , Biología Computacional , Cartilla de ADN/genética , Biblioteca de Genes , Glioblastoma/tratamiento farmacológico , Humanos , Proteínas de la Membrana/metabolismo , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae , Esfingosina N-Aciltransferasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Técnicas del Sistema de Dos Híbridos
2.
ScientificWorldJournal ; 2012: 838916, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22431925

RESUMEN

Glioblastoma (GBM) is a highly aggressive and lethal brain cancer with a median survival of less than two years after diagnosis. Hallmarks of GBM tumors include soaring proliferative indices, high levels of angiogenesis, diffuse invasion into normal brain parenchyma, resistance toward therapy-induced apoptosis, and pseudopallisading necrosis. Despite the recent advances in neurosurgery, radiation therapy, and the development of targeted chemotherapeutic regimes, GBM remains one of the deadliest types of cancer. Particularly, the alkylating agent temozolomide (TMZ) in combination with radiation therapy prolonged patient survival only marginally, and clinical studies assessing efficacies of targeted therapies, foremost ATP mimetics inhibiting the activity of receptor tyrosine kinases (RTKs), revealed only few initial responders; tumor recurrence is nearly universal, and salvage therapies to combat such progression remain ineffective. Consequently, myriad preclinical and clinical studies began to define the molecular mechanisms underlying therapy resistance of GBM tumors, and pointed to the Bcl-2 protein family, in particular the atypical member Bcl2-Like 12 (Bcl2L12), as important regulators of therapy-induced cell death. This review will discuss the multi-faceted modi operandi of Bcl-2 family proteins, describe their roles in therapy resistance of malignant glioma, and outline current and future drug development efforts to therapeutically target Bcl-2 proteins.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Caspasas/metabolismo , Núcleo Celular/metabolismo , Terapia Combinada , Dacarbazina/análogos & derivados , Dacarbazina/uso terapéutico , Glioma/metabolismo , Glioma/radioterapia , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Temozolomida , Proteína p53 Supresora de Tumor/metabolismo
3.
Sci Transl Med ; 5(209): 209ra152, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24174328

RESUMEN

Glioblastoma multiforme (GBM) is a neurologically debilitating disease that culminates in death 14 to 16 months after diagnosis. An incomplete understanding of how cataloged genetic aberrations promote therapy resistance, combined with ineffective drug delivery to the central nervous system, has rendered GBM incurable. Functional genomics efforts have implicated several oncogenes in GBM pathogenesis but have rarely led to the implementation of targeted therapies. This is partly because many "undruggable" oncogenes cannot be targeted by small molecules or antibodies. We preclinically evaluate an RNA interference (RNAi)-based nanomedicine platform, based on spherical nucleic acid (SNA) nanoparticle conjugates, to neutralize oncogene expression in GBM. SNAs consist of gold nanoparticles covalently functionalized with densely packed, highly oriented small interfering RNA duplexes. In the absence of auxiliary transfection strategies or chemical modifications, SNAs efficiently entered primary and transformed glial cells in vitro. In vivo, the SNAs penetrated the blood-brain barrier and blood-tumor barrier to disseminate throughout xenogeneic glioma explants. SNAs targeting the oncoprotein Bcl2Like12 (Bcl2L12)--an effector caspase and p53 inhibitor overexpressed in GBM relative to normal brain and low-grade astrocytomas--were effective in knocking down endogenous Bcl2L12 mRNA and protein levels, and sensitized glioma cells toward therapy-induced apoptosis by enhancing effector caspase and p53 activity. Further, systemically delivered SNAs reduced Bcl2L12 expression in intracerebral GBM, increased intratumoral apoptosis, and reduced tumor burden and progression in xenografted mice, without adverse side effects. Thus, silencing antiapoptotic signaling using SNAs represents a new approach for systemic RNAi therapy for GBM and possibly other lethal malignancies.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Nanopartículas/química , Ácidos Nucleicos/química , Interferencia de ARN , Animales , Apoptosis , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Ratones SCID , Proteínas Musculares/metabolismo , Ácidos Nucleicos/administración & dosificación , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cancer Res ; 70(21): 8347-56, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20940394

RESUMEN

In the earliest stages of metastasis, breast cancer cells must reorganize the cytoskeleton to affect cell shape change and promote cell invasion and motility. These events require the cytoskeletal regulators Cdc42 and Rho, their effectors such as N-WASp/WAVE, and direct inducers of actin polymerization such as Arp2/3. Little consideration has been given to molecules that shape the cell membrane. The F-BAR proteins CIP4, TOCA-1, and FBP17 generate membrane curvature and act as scaffolding proteins for activated Cdc42 and N-WASp. We found that expression of CIP4, but not TOCA-1 or FBP17, was increased in invasive breast cancer cell lines in comparison with weakly or noninvasive breast cancer cell lines. Endogenous CIP4 localized to the leading edge of migrating cells and to invadopodia in cells invading gelatin. Because CIP4 serves as a scaffolding protein for Cdc42, Src, and N-WASp, we tested whether loss of CIP4 could result in decreased N-WASp function. Interaction between CIP4 and N-WASp was epidermal growth factor responsive, and CIP4 silencing by small interfering RNA caused decreased tyrosine phosphorylation of N-WASp at a Src-dependent activation site (Y256). CIP4 silencing also impaired the migration and invasion of MDA-MB-231 cells and was associated with decreased formation of invadopodia and gelatin degradation. This study presents a new role for CIP4 in the promotion of migration and invasion of MDA-MB-231 breast cancer cells and establishes the contribution of F-BAR proteins to cancer cell motility and invasion.


Asunto(s)
Neoplasias de la Mama/patología , Extensiones de la Superficie Celular/patología , Proteínas Asociadas a Microtúbulos/fisiología , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Animales , Western Blotting , Neoplasias de la Mama/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Adhesión Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Proteínas de Unión a Ácidos Grasos , Femenino , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente , Gelatina/metabolismo , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Ratones , Ratones Desnudos , Antígenos de Histocompatibilidad Menor , Invasividad Neoplásica , Fosforilación , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tirosina/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA