Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 16(3): 747-753, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31825443

RESUMEN

The bola-amphiphilic, T-shaped mesogen CT2 has an aromatic, biphenyl core terminated on both ends by hydrophilic groups and a semi-perfluorinated, aliphatic side chain. Upon cooling from the isotropic phase, the fluorinated tails and the polar, rod-like cores nanophase-segregate to form a fluid lamellar phase. At high temperatures, the biphenyl cores are orientationally disordered in two dimensions (2D) in the lamellar planes but on further cooling the cores order orientationally, giving a biaxial lamellar phase with 2D nematic in-plane ordering. At lower temperature, the aromatic and hydrophilic parts of the cores nanosegregate within the lamellae and 2D smectic correlations of the head groups develop. X-ray diffraction shows that this 2D smectic ordering is incompatible with the initial lamellar structure, with both structures becoming short-ranged, resulting in a 3D biaxial nematic phase with macroscopic orthorhombic symmetry featuring strong smectic correlations in two orthogonal spatial dimensions. Freeze-fracture transmission electron microscopy enables direct visualization of the resulting short-ranged periodic structures.

2.
Chemphyschem ; 17(11): 1568-72, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-26928989

RESUMEN

The orientational order parameter S2 is one of the most important quantities to describe the degree of long-range orientational ordering of liquid crystals. There are several approaches to experimentally measure this order parameter of liquid crystalline phases but every method includes substantial simplifications and assumptions. We present a simulation-based approach to elucidate the reliability of the method of Davidson, Petermann and Levelut to measure S2 via 2D X-ray experiments. We have found that this method slightly underestimates S2 by an absolute value of only 0.05 and thus provides reliable measures of S2 by X-ray diffraction.

3.
J Chem Phys ; 145(13): 134901, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27782446

RESUMEN

Simple smectic A liquid crystal phases with different types of prescribed orientational distribution functions have been simulated and compared in order to study the possibility to distinguish between the Maier-Saupe type and cone-like orientational distributions using the popular method of Davidson et al. [J. Phys. II 5, 113 (1995)]. This method has been used to extract the orientational distribution functions from simulated diffraction patterns, and the results have been compared with actual distribution functions which have been prescribed during simulations. It has been shown that it is indeed possible to distinguish between these two qualitatively different types of orientational distribution already from the shape of the 2D diffraction pattern. Moreover, typical experimental diffraction patterns for "de Vries"-type smectic liquid crystals appear to be close to the ones which have been simulated using the prescribed Maier-Saupe orientational distribution function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA