Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Neurochem ; 156(6): 967-978, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32880929

RESUMEN

The lysosomal membrane protein Niemann-Pick type C1 (NPC1) and Niemann-Pick type C2 (NPC2) are main players of cholesterol control in the lysosome and it is known that the mutation on these proteins leads to the cholesterol trafficking-related neurodegenerative disease, which is called the NPC disease. The mutation R518W or R518Q on the NPC1 is one of the type of disease-related mutation that causes cholesterol transports to be cut in half, which results in the accumulation of cholesterol and lipids in the late endosomal/lysosomal compartment of the cell. Even though there has been significant progress with understanding the cholesterol transport by NPC1 in combination with NPC2, especially after the structural determination of the full-length NPC1 in 2016, many details such as the interaction of the full-length NPC1 with the NPC2, the molecular motions responsible for the cholesterol transport during and after this interaction, and the structure and the function relations of many mutations are still not well understood. In this study, we report the extensive molecular dynamics simulations in order to gain insight into the structure and the dynamics of NPC1 lumenal domain for the cholesterol transport and the disease behind the mutation (R518W). It was found that the mutation induces a structural shift of the N-terminal domain, toward the loop region in the middle lumenal domain, which is believed to play a central role in the interaction with NPC2 protein, so the interaction with the NPC2 protein might be less favorable compared to the wild NPC1. Also, the simulation indicates the possible re-orientation of the N-terminal domain with both the wild and the R518W-mutated NPC1 after receiving the cholesterol from the NPC2 that align to form an internal tunnel, which is a possible pose for further action in cholesterol trafficking. We believe the current study can provide a better understanding of the cholesterol transport by NPC1 especially the role of NTD of NPC1 in combination with NPC2 interactions.


Asunto(s)
Colesterol/metabolismo , Enfermedad de Niemann-Pick Tipo C/genética , Transporte Biológico , Endosomas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Metabolismo de los Lípidos/genética , Lisosomas/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación/genética , Proteína Niemann-Pick C1 , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Difracción de Rayos X
2.
Phys Chem Chem Phys ; 22(1): 252-257, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31808474

RESUMEN

Water confinement inside a carbon nanotube (CNT) has been one of the most exciting subjects of both experimental and theoretical interest. Most of the previous studies, however, considered CNT structures with simple cylindrical shapes. In this paper, we report a classical molecular dynamics study of the equilibrium structural arrangement of water molecules confined in a multiply connected carbon nanotube (MCCNT) containing two Y-junctions. We investigate the structural arrangement of the water molecules in the MCCNT in terms of the density of water molecules and the average number of hydrogen bonds per water molecule. Our results show that the structural rearrangement of the H2O molecules takes place several angstroms ahead of the Y-junction, rather than only at the CNT junction itself. This phenomenon arises because it is difficult to match the boundary condition for hydrogen bonding in the region where two different hydrogen-bonded structures are interconnected with each other.

3.
Ann Dermatol ; 25(3): 315-20, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24003274

RESUMEN

BACKGROUND: The fibrous proteins of extracellular matrix (ECM) produced by dermal fibroblast contributes to the maintenance of connective tissue integrity. OBJECTIVE: This study is carried out to identify the bioactive ingredient from natural products that enhances ECM production in dermal fibroblasts. METHODS: Bioassay-directed fractionation was used to isolate the active ingredient from natural extracts. The effects of rasatiol (isolated from Raphanus sativus) on ECM production in primary cultured human dermal fibroblasts was investigated by enzyme linked immunosorbent assay and western blot analysis. RESULTS: Rasatiol accelerated fibroblast growth in a dose-dependent manner and increased the production of type 1 collagen, fibronectin and elastin. Phosphorylation of p42/44 extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and Akt was remarkably increased by rasatiol, indicating that enhanced ECM production is linked to the activation of intracellular signaling cascades. CONCLUSION: These results indicate that rasatiol stimulates the fibrous components of ECM production, and may be applied to the maintenance of skin texture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA