Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immunity ; 52(2): 357-373.e9, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32049051

RESUMEN

Clearance of apoptotic cells by macrophages prevents excessive inflammation and supports immune tolerance. Here, we examined the effect of blocking apoptotic cell clearance on anti-tumor immune response. We generated an antibody that selectively inhibited efferocytosis by phagocytic receptor MerTK. Blockade of MerTK resulted in accumulation of apoptotic cells within tumors and triggered a type I interferon response. Treatment of tumor-bearing mice with anti-MerTK antibody stimulated T cell activation and synergized with anti-PD-1 or anti-PD-L1 therapy. The anti-tumor effect induced by anti-MerTK treatment was lost in Stinggt/gt mice, but not in Cgas-/- mice. Abolishing cGAMP production in Cgas-/- tumor cells, depletion of extracellular ATP, or inactivation of the ATP-gated P2X7R channel also compromised the effects of MerTK blockade. Mechanistically, extracellular ATP acted via P2X7R to enhance the transport of extracellular cGAMP into macrophages and subsequent STING activation. Thus, MerTK blockade increases tumor immunogenicity and potentiates anti-tumor immunity, which has implications for cancer immunotherapy.


Asunto(s)
Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Nucleótidos Cíclicos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Tirosina Quinasa c-Mer/inmunología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Antígeno B7-H1/inmunología , Células Cultivadas , Femenino , Inmunidad Innata , Inmunoterapia , Interferón Tipo I/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Nucleotidiltransferasas/deficiencia , Nucleotidiltransferasas/metabolismo , Fagocitosis , Receptor de Muerte Celular Programada 1/inmunología , Receptores Purinérgicos P2X7/deficiencia , Transducción de Señal/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa c-Mer/genética
2.
Cancer Cell ; 42(3): 429-443.e4, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38366589

RESUMEN

Atezolizumab (anti-PD-L1), combined with carboplatin and etoposide (CE), is now a standard of care for extensive-stage small-cell lung cancer (ES-SCLC). A clearer understanding of therapeutically relevant SCLC subsets could identify rational combination strategies and improve outcomes. We conduct transcriptomic analyses and non-negative matrix factorization on 271 pre-treatment patient tumor samples from IMpower133 and identify four subsets with general concordance to previously reported SCLC subtypes (SCLC-A, -N, -P, and -I). Deeper investigation into the immune heterogeneity uncovers two subsets with differing neuroendocrine (NE) versus non-neuroendocrine (non-NE) phenotypes, demonstrating immune cell infiltration hallmarks. The NE tumors with low tumor-associated macrophage (TAM) but high T-effector signals demonstrate longer overall survival with PD-L1 blockade and CE versus CE alone than non-NE tumors with high TAM and high T-effector signal. Our study offers a clinically relevant approach to discriminate SCLC patients likely benefitting most from immunotherapies and highlights the complex mechanisms underlying immunotherapy responses.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Pulmonares/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/genética , Carboplatino/uso terapéutico , Etopósido/uso terapéutico , Inmunoterapia
3.
Pulm Pharmacol Ther ; 25(4): 268-75, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21514397

RESUMEN

Emphysema is a disease of the lung parenchyma with progressive alveolar tissue destruction that leads to peripheral airspace enlargement. In this review, we discuss how mechanical forces can contribute to disease progression at various length scales. Airspace enlargement requires mechanical failure of alveolar walls. Because the lung tissue is under a pre-existing tensile stress, called prestress, the failure of a single wall results in a redistribution of the local prestress. During this process, the prestress increases on neighboring alveolar walls which in turn increases the probability that these walls also undergo mechanical failure. There are several mechanisms that can contribute to this increased probability: exceeding the failure threshold of the ECM, triggering local mechanotransduction to release enzymes, altering enzymatic reactions on ECM molecules. Next, we specifically discuss recent findings that stretching of elastin induces an increase in the binding off rate of elastase to elastin as well as unfolds hidden binding sites along the fiber. We argue that these events can initiate a positive feedback loop which generates slow avalanches of breakdown that eventually give rise to the relentless progression of emphysema. We propose that combining modeling at various length scales with corresponding biological assays, imaging and mechanics data will provide new insight into the progressive nature of emphysema. Such approaches will have the potential to contribute to resolving many of the outstanding issues which in turn may lead to the amelioration or perhaps the treatment of emphysema in the future.


Asunto(s)
Sitios de Unión/fisiología , Elastasa Pancreática/metabolismo , Enfisema Pulmonar/enzimología , Animales , Fenómenos Biomecánicos , Colágeno , Progresión de la Enfermedad , Elastina/metabolismo , Matriz Extracelular/metabolismo , Humanos , Pulmón/enzimología , Mecanotransducción Celular , Alveolos Pulmonares/metabolismo , Porcinos/metabolismo
4.
Proc Natl Acad Sci U S A ; 106(4): 1081-6, 2009 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-19144920

RESUMEN

Mechanical failure of soft tissues is characteristic of life-threatening diseases, including capillary stress failure, pulmonary emphysema, and vessel wall aneurysms. Failure occurs when mechanical forces are sufficiently high to rupture the enzymatically weakened extracellular matrix (ECM). Elastin, an important structural ECM protein, is known to stretch beyond 200% strain before failing. However, ECM constructs and native vessel walls composed primarily of elastin and proteoglycans (PGs) have been found to fail at much lower strains. In this study, we hypothesized that PGs significantly contribute to tissue failure. To test this, we developed a zipper network model (ZNM), in which springs representing elastin are organized into long wavy fibers in a zipper-like formation and placed within a network of springs mimicking PGs. Elastin and PG springs possessed distinct mechanical and failure properties. Simulations using the ZNM showed that the failure of PGs alone reduces the global failure strain of the ECM well below that of elastin, and hence, digestion of elastin does not influence the failure strain. Network analysis suggested that whereas PGs drive the failure process and define the failure strain, elastin determines the peak and failure stresses. Predictions of the ZNM were experimentally confirmed by measuring the failure properties of engineered elastin-rich ECM constructs before and after digestion with trypsin, which cleaves the core protein of PGs without affecting elastin. This study reveals a role for PGs in the failure properties of engineered and native ECM with implications for the design of engineered tissues.


Asunto(s)
Matriz Extracelular/química , Modelos Biológicos , Animales , Fenómenos Biomecánicos , Simulación por Computador , Elasticidad , Elastina/química , Proteoglicanos/química , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
5.
Biophys J ; 99(9): 3076-83, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21044606

RESUMEN

Many fundamental cellular and extracellular processes in the body are mediated by enzymes. At the single molecule level, enzyme activity is influenced by mechanical forces. However, the effects of mechanical forces on the kinetics of enzymatic reactions in complex tissues with intact extracellular matrix (ECM) have not been identified. Here we report that physiologically relevant macroscopic mechanical forces modify enzyme activity at the molecular level in the ECM of the lung parenchyma. Porcine pancreatic elastase (PPE), which binds to and digests elastin, was fluorescently conjugated (f-PPE) and fluorescent recovery after photobleach was used to evaluate the binding kinetics of f-PPE in the alveolar walls of normal mouse lungs. Fluorescent recovery after photobleach indicated that the dissociation rate constant (k(off)) for f-PPE was significantly larger in stretched than in relaxed alveolar walls with a linear relation between k(off) and macroscopic strain. Using a network model of the parenchyma, a linear relation was also found between k(off) and microscopic strain on elastin fibers. Further, the binding pattern of f-PPE suggested that binding sites on elastin unfold with strain. The increased overall reaction rate also resulted in stronger structural breakdown at the level of alveolar walls, as well as accelerated decay of stiffness and decreased failure stress of the ECM at the macroscopic scale. These results suggest an important role for the coupling between mechanical forces and enzyme activity in ECM breakdown and remodeling in development, and during diseases such as pulmonary emphysema or vascular aneurysm. Our findings may also have broader implications because in vivo, enzyme activity in nearly all cellular and extracellular processes takes place in the presence of mechanical forces.


Asunto(s)
Elastina/química , Elastina/metabolismo , Pulmón/metabolismo , Elastasa Pancreática/química , Elastasa Pancreática/metabolismo , Animales , Sitios de Unión , Fenómenos Biomecánicos , Fenómenos Biofísicos , Elasticidad , Matriz Extracelular/metabolismo , Colorantes Fluorescentes , Técnicas In Vitro , Cinética , Pulmón/anatomía & histología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Modelos Biológicos , Estrés Mecánico , Porcinos
6.
Cancer Immunol Res ; 8(6): 806-818, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32238381

RESUMEN

Antiangiogenic therapies that target the VEGF pathway have been used clinically to combat cancer for over a decade. Beyond having a direct impact on blood vessel development and tumor perfusion, accumulating evidence indicates that these agents also affect antitumor immune responses. Numerous clinical trials combining antiangiogenic drugs with immunotherapies for the treatment of cancer are ongoing, but a mechanistic understanding of how disruption of tumor angiogenesis may impact immunity is not fully discerned. Here, we reveal that blockade of VEGF-A with a mAb to VEGF augments activation of CD8+ T cells within tumors and potentiates their capacity to produce cytokines. We demonstrate that this phenomenon relies on the disruption of VEGFR2 signaling in the tumor microenvironment but does not affect CD8+ T cells directly. Instead, the augmented functional capacity of CD8+ T cells stems from increased tumor hypoxia that initiates a hypoxia-inducible factor-1α program within CD8+ T cells that directly enhances cytokine production. Finally, combinatorial administration of anti-VEGF with an immunotherapeutic antibody, anti-OX40, improved antitumor activity over single-agent treatments. Our findings illustrate that anti-VEGF treatment enhances CD8+ T-cell effector function and provides a mechanistic rationale for combining antiangiogenic and immunotherapeutic drugs for cancer treatment.


Asunto(s)
Bevacizumab/farmacología , Linfocitos T CD8-positivos/inmunología , Neoplasias del Colon/terapia , Hipoxia/patología , Activación de Linfocitos/inmunología , Melanoma Experimental/terapia , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Animales , Apoptosis , Linfocitos T CD8-positivos/efectos de los fármacos , Proliferación Celular , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Citotoxicidad Inmunológica/inmunología , Femenino , Humanos , Hipoxia/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunoterapia , Activación de Linfocitos/efectos de los fármacos , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células Tumorales Cultivadas , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Sci Immunol ; 5(45)2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32220977

RESUMEN

During cytotoxic T cell activation, lymphocyte function-associated antigen-1 (LFA-1) engages its ligands on antigen-presenting cells (APCs) or target cells to enhance T cell priming or lytic activity. Inhibiting LFA-1 dampens T cell-dependent symptoms in inflammation, autoimmune diseases, and graft-versus-host disease. However, the therapeutic potential of augmenting LFA-1 function is less explored. Here, we show that genetic deletion or inhibition of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) enhances LFA-1 activation on CD8 T cells and improves their adherence to APCs or LFA-1 ligand. In addition, loss of Map4k4 increases CD8 T cell priming, which culminates in enhanced antigen-dependent activation, proliferation, cytokine production, and cytotoxic activity, resulting in impaired tumor growth and improved response to viral infection. LFA-1 inhibition reverses these phenotypes. The ERM (ezrin, radixin, and moesin) proteins reportedly regulate T cell-APC conjugation, but the molecular regulator and effector of ERM proteins in T cells have not been defined. In this study, we demonstrate that the ERM proteins serve as mediators between MAP4K4 and LFA-1. Last, systematic analyses of many organs revealed that inducible whole-body deletion of Map4k4 in adult animals is tolerated under homeostatic conditions. Our results uncover MAP4K4 as a potential target to augment antitumor and antiviral immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Neoplasias/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Virus/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Modelos Animales de Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Antígeno-1 Asociado a Función de Linfocito/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética
8.
J Appl Physiol (1985) ; 103(3): 803-11, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17540839

RESUMEN

Enzyme activity plays an essential role in many physiological processes and diseases such as pulmonary emphysema. While the lung is constantly exposed to cyclic stretching, the effects of stretch on the mechanical properties of the extracellular matrix (ECM) during digestion have not been determined. We measured the mechanical and failure properties of elastin-rich ECM sheets loaded with static or cyclic uniaxial stretch (40% peak strain) during elastase digestion. Quasistatic stress-strain measurements were taken during 30 min of digestion. The incremental stiffness of the sheets decreased exponentially with time during digestion. However, digestion in the presence of static stretch resulted in an accelerated stiffness decrease, with a time constant that was nearly 3 x smaller (7.1 min) than during digestion alone (18.4 min). These results were supported by simulations that used a nonlinear spring network model. The reduction in stiffness was larger during static than cyclic stretch, and the latter also depended on the frequency. Stretching at 20 cycles/min decreased stiffness less than stretching at 5 cycles/min, suggesting a rate-dependent coupling between mechanical forces and enzyme activity. Furthermore, pure digestion reduced the failure stress of the sheets from 88 +/- 21 kPa in control to 29 +/- 15 kPa (P < 0.05), while static and cyclic stretch resulted in a failure stress of 7 +/- 5 kPa (P < 0.05). We conclude that not only the presence but the dynamic nature of mechanical forces have a significant impact on enzyme activity, hence the deterioration of the functional properties of the ECM during exposure to enzymes.


Asunto(s)
Matriz Extracelular/fisiología , Elastasa Pancreática/metabolismo , Animales , Células Cultivadas , Matriz Extracelular/enzimología , Periodicidad , Ratas , Ratas Sprague-Dawley , Estrés Mecánico , Resistencia a la Tracción
9.
ACS Med Chem Lett ; 6(8): 913-8, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26288693

RESUMEN

Diverse biological roles for mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) have necessitated the identification of potent inhibitors in order to study its function in various disease contexts. In particular, compounds that can be used to carry out such studies in vivo would be critical for elucidating the potential for therapeutic intervention. A structure-based design effort coupled with property-guided optimization directed at minimizing the ability of the inhibitors to cross into the CNS led to an advanced compound 13 (GNE-495) that showed excellent potency and good PK and was used to demonstrate in vivo efficacy in a retinal angiogenesis model recapitulating effects that were observed in the inducible Map4k4 knockout mice.

10.
J Biomech ; 45(5): 756-61, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22177672

RESUMEN

For an arterial replacement graft to be effective, it must possess the appropriate strength in order to withstand long-term hemodynamic stress without failure, yet be compliant enough that the mismatch between the stiffness of the graft and the native vessel wall is minimized. The native vessel wall is a structurally complex tissue characterized by circumferentially oriented collagen fibers/cells and lamellar elastin. Besides the biochemical composition, the functional properties of the wall, including stiffness, depend critically on the structural organization. Therefore, it will be crucial to develop methods of producing tissues with defined structures in order to more closely mimic the properties of a native vessel. To this end, we sought to generate cell sheets that have specific ECM/cell organization using micropatterned polydimethylsiloxane (PDMS) substrates to guide cell organization and tissue growth. The patterns consisted of large arrays of alternating grooves and ridges. Adult bovine aortic smooth muscle cells cultured on these substrates in the presence of ascorbic acid produced ECM-rich sheets several cell layers thick in which both the cells and ECM exhibited strong alignment in the direction of the micropattern. Moreover, mechanical testing revealed that the sheets exhibited mechanical anisotropy similar to that of native vessels with both the stiffness and strength being significantly larger in the direction of alignment, demonstrating that the microscale control of ECM organization results in functional changes in macroscale material behavior.


Asunto(s)
Arterias/citología , Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/fisiología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Ingeniería de Tejidos/métodos , Animales , Anisotropía , Ácido Ascórbico/farmacología , Fenómenos Biomecánicos , Bovinos , Células Cultivadas , Dimetilpolisiloxanos/farmacología , Hemodinámica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA