Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cancer Immunol Immunother ; 64(10): 1229-39, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26091797

RESUMEN

Systemic administration of small molecule toll-like receptor (TLR)-7 agonists leads to potent activation of innate immunity and to the generation of anti-tumor immune responses. However, activation of TLRs with small molecule agonists may lead to the induction of TLR tolerance, defined as a state of hyporesponsiveness to subsequent agonism, which may limit immune activation, the generation of anti-tumor responses and clinical response. Our data reveal that dose scheduling impacts on the efficacy of systemic therapy with the selective TLR7 agonist, 6-amino-2-(butylamino)-9-((6-(2-(dimethylamino)ethoxy)pyridin-3-yl)methyl)-7,9-dihydro-8H-purin-8-one (DSR-6434). In a preclinical model of renal cell cancer, systemic administration of DSR-6434 dosed once weekly resulted in a significant anti-tumor response. However, twice weekly dosing of DSR-6434 led to the induction of TLR tolerance, and no anti-tumor response was observed. We show that TLR7 tolerance was independent of type I interferon (IFN) negative feedback because induction of TLR7 tolerance was also observed in IFN-α/ß receptor knockout mice treated with DSR-6434. Moreover, our data demonstrate that treatment of bone marrow-derived plasmacytoid dendritic cells (BM-pDC) with DSR-6434 led to downregulation of TLR7 expression. From our data, dose scheduling of systemically administered TLR7 agonists can impact on anti-tumor activity through the induction of TLR tolerance. Furthermore, TLR7 expression on pDC may be a useful biomarker of TLR7 tolerance and aid in the optimization of dosing schedules involving systemically administered TLR7 agonists.


Asunto(s)
Adenina/análogos & derivados , Carcinoma de Células Renales/inmunología , Glicoproteínas de Membrana/metabolismo , Receptor Toll-Like 7/metabolismo , Adenina/administración & dosificación , Adenina/farmacología , Animales , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Protocolos Clínicos , Citotoxicidad Inmunológica , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Interferón Tipo I/metabolismo , Glicoproteínas de Membrana/agonistas , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Experimentales , Transducción de Señal , Receptor Toll-Like 7/agonistas
2.
Int J Cancer ; 135(4): 820-9, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24390981

RESUMEN

Although topical TLR7 therapies such as imiquimod have proved successful in the treatment of dermatological malignancy, systemic delivery may be required for optimal immunotherapy of nondermatological tumors. We report that intravenous delivery of the novel small molecule TLR7 agonist, DSR-6434, leads to the induction of type 1 interferon and activation of T and B lymphocytes, NK and NKT cells. Our data demonstrate that systemic administration of DSR-6434 enhances the efficacy of ionizing radiation (IR) and leads to improved survival in mice bearing either CT26 or KHT tumors. Of the CT26 tumor-bearing mice that received combined therapy, 55% experienced complete tumor resolution. Our data reveal that these long-term surviving mice have a significantly greater frequency of tumor antigen specific CD8(+) T cells when compared to age-matched tumor-naïve cells. To evaluate therapeutic effects on spontaneous metastases, we showed that combination of DSR-6434 with local IR of the primary tumor significantly reduced metastatic burden in the lung, when compared to time-matched cohorts treated with IR alone. The data demonstrate that systemic administration of the novel TLR7 agonist DSR-6434 in combination with IR primes an antitumor CD8(+) T-cell response leading to improved survival in syngeneic models of colorectal carcinoma and fibrosarcoma. Importantly, efficacy extends to sites outside of the field of irradiation, reducing metastatic load. Clinical evaluation of systemic TLR7 therapy in combination with IR for the treatment of solid malignancy is warranted.


Asunto(s)
Adenina/análogos & derivados , Inmunoterapia/métodos , Glicoproteínas de Membrana/agonistas , Neoplasias/radioterapia , Receptor Toll-Like 7/agonistas , Adenina/administración & dosificación , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/efectos de la radiación , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Interferón gamma/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/efectos de la radiación , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Noqueados , Metástasis de la Neoplasia , Trasplante de Neoplasias , Radiación Ionizante , Bazo/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/efectos de la radiación
3.
Nat Med ; 30(3): 716-729, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351187

RESUMEN

For patients with non-small-cell lung cancer (NSCLC) tumors without currently targetable molecular alterations, standard-of-care treatment is immunotherapy with anti-PD-(L)1 checkpoint inhibitors, alone or with platinum-doublet therapy. However, not all patients derive durable benefit and resistance to immune checkpoint blockade is common. Understanding mechanisms of resistance-which can include defects in DNA damage response and repair pathways, alterations or functional mutations in STK11/LKB1, alterations in antigen-presentation pathways, and immunosuppressive cellular subsets within the tumor microenvironment-and developing effective therapies to overcome them, remains an unmet need. Here the phase 2 umbrella HUDSON study evaluated rational combination regimens for advanced NSCLC following failure of anti-PD-(L)1-containing immunotherapy and platinum-doublet therapy. A total of 268 patients received durvalumab (anti-PD-L1 monoclonal antibody)-ceralasertib (ATR kinase inhibitor), durvalumab-olaparib (PARP inhibitor), durvalumab-danvatirsen (STAT3 antisense oligonucleotide) or durvalumab-oleclumab (anti-CD73 monoclonal antibody). Greatest clinical benefit was observed with durvalumab-ceralasertib; objective response rate (primary outcome) was 13.9% (11/79) versus 2.6% (5/189) with other regimens, pooled, median progression-free survival (secondary outcome) was 5.8 (80% confidence interval 4.6-7.4) versus 2.7 (1.8-2.8) months, and median overall survival (secondary outcome) was 17.4 (14.1-20.3) versus 9.4 (7.5-10.6) months. Benefit with durvalumab-ceralasertib was consistent across known immunotherapy-refractory subgroups. In ATM-altered patients hypothesized to harbor vulnerability to ATR inhibition, objective response rate was 26.1% (6/23) and median progression-free survival/median overall survival were 8.4/22.8 months. Durvalumab-ceralasertib safety/tolerability profile was manageable. Biomarker analyses suggested that anti-PD-L1/ATR inhibition induced immune changes that reinvigorated antitumor immunity. Durvalumab-ceralasertib is under further investigation in immunotherapy-refractory NSCLC.ClinicalTrials.gov identifier: NCT03334617.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Morfolinas , Pirimidinas , Sulfonamidas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Platino (Metal)/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Anticuerpos Monoclonales , Antineoplásicos/uso terapéutico , Biomarcadores , Antígeno B7-H1 , Microambiente Tumoral
4.
J Med Chem ; 61(22): 9889-9907, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30346772

RESUMEN

The kinase ataxia telangiectasia mutated and rad3 related (ATR) is a key regulator of the DNA-damage response and the apical kinase which orchestrates the cellular processes that repair stalled replication forks (replication stress) and associated DNA double-strand breaks. Inhibition of repair pathways mediated by ATR in a context where alternative pathways are less active is expected to aid clinical response by increasing replication stress. Here we describe the development of the clinical candidate 2 (AZD6738), a potent and selective sulfoximine morpholinopyrimidine ATR inhibitor with excellent preclinical physicochemical and pharmacokinetic (PK) characteristics. Compound 2 was developed improving aqueous solubility and eliminating CYP3A4 time-dependent inhibition starting from the earlier described inhibitor 1 (AZ20). The clinical candidate 2 has favorable human PK suitable for once or twice daily dosing and achieves biologically effective exposure at moderate doses. Compound 2 is currently being tested in multiple phase I/II trials as an anticancer agent.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Sulfóxidos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Fenómenos Químicos , Ensayos Clínicos como Asunto , Femenino , Humanos , Indoles , Ratones , Modelos Moleculares , Conformación Molecular , Morfolinas , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Sulfonamidas , Sulfóxidos/química , Sulfóxidos/farmacocinética , Distribución Tisular
5.
Oncotarget ; 7(13): 17035-46, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26959743

RESUMEN

Strategies to augment anti-cancer immune responses have recently demonstrated therapeutic utility. To date clinical success has been achieved through targeting co-inhibitory checkpoints such as CTLA-4, PD-1, and PD-L1. However, approaches that target co-activatory pathways are also being actively being developed. Here we report that the novel TLR7-selective agonist DSR-29133 is well tolerated in mice and leads to acute immune activation. Administration of DSR-29133 leads to the induction of IFNα/γ, IP-10, TNFα, IL-1Ra and IL-12p70, and to a reduction in tumor burden in syngeneic models of renal cancer (Renca), metastatic osteosarcoma (LM8) and colorectal cancer (CT26). Moreover, we show that the efficacy of DSR-29133 was significantly improved when administered in combination with low-dose fractionated radiotherapy (RT). Effective combination therapy required weekly administration of DSR-29133 commencing on day 1 of a fractionated RT treatment cycle, whereas no enhancement of radiation response was observed when DSR-29133 was administered at the end of the fractionated RT cycle. Combined therapy resulted in curative responses in a high proportion of mice bearing established CT26 tumors which was dependent on the activity of CD8+ T-cells but independent of CD4+ T-cells and NK/NKT cells. Moreover, long-term surviving mice originally treated with DSR-29133 and RT were protected by a tumor-specific memory immune response which could prevent tumor growth upon rechallenge. These results demonstrate that DSR-29133 is a potent selective TLR7 agonist that when administered intravenously can induce anti-tumor immune responses that can be further enhanced through combination with low-dose fractionated RT.


Asunto(s)
Adenina/análogos & derivados , Antineoplásicos/farmacología , Quimioradioterapia/métodos , Neoplasias Experimentales/tratamiento farmacológico , Receptor Toll-Like 7/agonistas , Adenina/farmacología , Administración Intravenosa , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Fraccionamiento de la Dosis de Radiación , Humanos , Activación de Linfocitos/efectos de los fármacos , Ratones , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/radioterapia
6.
Sci Transl Med ; 8(325): 325ra17, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26865565

RESUMEN

Efforts to apply nanotechnology in cancer have focused almost exclusively on the delivery of cytotoxic drugs to improve therapeutic index. There has been little consideration of molecularly targeted agents, in particular kinase inhibitors, which can also present considerable therapeutic index limitations. We describe the development of Accurin polymeric nanoparticles that encapsulate the clinical candidate AZD2811, an Aurora B kinase inhibitor, using an ion pairing approach. Accurins increase biodistribution to tumor sites and provide extended release of encapsulated drug payloads. AZD2811 nanoparticles containing pharmaceutically acceptable organic acids as ion pairing agents displayed continuous drug release for more than 1 week in vitro and a corresponding extended pharmacodynamic reduction of tumor phosphorylated histone H3 levels in vivo for up to 96 hours after a single administration. A specific AZD2811 nanoparticle formulation profile showed accumulation and retention in tumors with minimal impact on bone marrow pathology, and resulted in lower toxicity and increased efficacy in multiple tumor models at half the dose intensity of AZD1152, a water-soluble prodrug of AZD2811. These studies demonstrate that AZD2811 can be formulated in nanoparticles using ion pairing agents to give improved efficacy and tolerability in preclinical models with less frequent dosing. Accurins specifically, and nanotechnology in general, can increase the therapeutic index of molecularly targeted agents, including kinase inhibitors targeting cell cycle and oncogenic signal transduction pathways, which have to date proved toxic in humans.


Asunto(s)
Aurora Quinasas/antagonistas & inhibidores , Nanopartículas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Aurora Quinasas/metabolismo , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Línea Celular Tumoral , Liberación de Fármacos , Femenino , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones SCID , Organofosfatos/química , Organofosfatos/farmacocinética , Organofosfatos/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Quinazolinas/química , Quinazolinas/farmacocinética , Quinazolinas/farmacología , Ratas Desnudas , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Med Chem ; 57(1): 56-70, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24304238

RESUMEN

Evaluation of the effects of purine C-8 substitution within a series of CDK1/2-selective O(6)-cyclohexylmethylguanine derivatives revealed that potency decreases initially with increasing size of the alkyl substituent. Structural analysis showed that C-8 substitution is poorly tolerated, and to avoid unacceptable steric interactions, these compounds adopt novel binding modes. Thus, 2-amino-6-cyclohexylmethoxy-8-isopropyl-9H-purine adopts a "reverse" binding mode where the purine backbone has flipped 180°. This provided a novel lead chemotype from which we have designed more potent CDK2 inhibitors using, in the first instance, quantum mechanical energy calculations. Introduction of an ortho-tolyl or ortho-chlorophenyl group at the purine C-8 position restored the potency of these "reverse" binding mode inhibitors to that of the parent 2-amino-6-cyclohexylmethoxy-9H-purine. By contrast, the corresponding 8-(2-methyl-3-sulfamoylphenyl)-purine derivative exhibited submicromolar CDK2-inhibitory activity by virtue of engineered additional interactions with Asp86 and Lys89 in the reversed binding mode, as confirmed by X-ray crystallography.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/síntesis química , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
8.
J Med Chem ; 56(5): 2125-38, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23394205

RESUMEN

ATR is an attractive new anticancer drug target whose inhibitors have potential as chemo- or radiation sensitizers or as monotherapy in tumors addicted to particular DNA-repair pathways. We describe the discovery and synthesis of a series of sulfonylmorpholinopyrimidines that show potent and selective ATR inhibition. Optimization from a high quality screening hit within tight SAR space led to compound 6 (AZ20) which inhibits ATR immunoprecipitated from HeLa nuclear extracts with an IC50 of 5 nM and ATR mediated phosphorylation of Chk1 in HT29 colorectal adenocarcinoma tumor cells with an IC50 of 50 nM. Compound 6 potently inhibits the growth of LoVo colorectal adenocarcinoma tumor cells in vitro and has high free exposure in mouse following moderate oral doses. At well tolerated doses 6 leads to significant growth inhibition of LoVo xenografts grown in nude mice. Compound 6 is a useful compound to explore ATR pharmacology in vivo.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Morfolinas/síntesis química , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/síntesis química , Animales , Antineoplásicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada , Cristalografía por Rayos X , Descubrimiento de Drogas , Femenino , Células HeLa , Humanos , Ratones , Modelos Moleculares , Morfolinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Comput Chem ; 24(13): 1637-56, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12926007

RESUMEN

The docking of flexible small molecule ligands to large flexible protein targets is addressed in this article using a two-stage simulation-based method. The methodology presented is a hybrid approach where the first component is a dock of the ligand to the protein binding site, based on deriving sets of simultaneously satisfied intermolecular hydrogen bonds using graph theory and a recursive distance geometry algorithm. The output structures are reduced in number by cluster analysis based on distance similarities. These structures are submitted to a modified Monte Carlo algorithm using the AMBER-AA molecular mechanics force field with the Generalized Born/Surface Area (GB/SA) continuum model. This solvent model is not only less expensive than an explicit representation, but also yields increased sampling. Sampling is also increased using a rotamer library to direct some of the protein side-chain movements along with large dihedral moves. Finally, a softening function for the nonbonded force field terms is used, enabling the potential energy function to be slowly turned on throughout the course of the simulation. The docking procedure is optimized, and the results are presented for a single complex of the arabinose binding protein. It was found that for a rigid receptor model, the X-ray binding geometry was reproduced and uniquely identified based on the associated potential energy. However, when side-chain flexibility was included, although the X-ray structure was identified, it was one of three possible binding geometries that were energetically indistinguishable. These results suggest that on relaxing the constraint on receptor flexibility, the docking energy hypersurface changes from being funnel-like to rugged. A further 14 complexes were then examined using the optimized protocol. For each complex the docking methodology was tested for a fully flexible ligand, both with and without protein side-chain flexibility. For the rigid protein docking, 13 out of the 15 test cases were able to find the experimental binding mode; this number was reduced to 11 for the flexible protein docking. However, of these 11, in the majority of cases the experimental binding mode was not uniquely identified, but was present in a cluster of low energy structures that were energetically indistinguishable. These results not only support the presence of a rugged docking energy hypersurface, but also suggest that it may be necessary to consider the possibility of more than one binding conformation during ligand optimization.


Asunto(s)
Algoritmos , Simulación por Computador , Modelos Moleculares , Proteínas/química , Aminoácidos/química , Proteínas Portadoras/química , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Enlace de Hidrógeno , Ligandos , Estructura Molecular , Método de Montecarlo , Conformación Proteica , Termodinámica
10.
Bioorg Med Chem Lett ; 14(21): 5389-94, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15454232
13.
Bioorg Med Chem Lett ; 13(18): 3021-6, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12941325

RESUMEN

High-throughput screening identified the imidazo[1,2-a]pyridine and bisanilinopyrimidine series as inhibitors of the cyclin-dependent kinase CDK4. Comparison of their experimentally-determined binding modes and emerging structure-activity trends led to the development of potent and selective imidazo[1,2-a]pyridine inhibitors for CDK4 and in particular CDK2.


Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Proteínas Proto-Oncogénicas , Piridinas/síntesis química , Quinasas CDC2-CDC28/antagonistas & inhibidores , Quinasas CDC2-CDC28/química , Cristalografía por Rayos X , Quinasa 2 Dependiente de la Ciclina , Quinasa 4 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Unión Proteica , Piridinas/química , Piridinas/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA