RESUMEN
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Asunto(s)
Barrera Hematoencefálica , Esclerosis Múltiple , Barrera Hematoencefálica/virología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Humanos , Animales , Esclerosis Múltiple/virología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Ratones , Uniones Estrechas/virología , Uniones Estrechas/metabolismo , Permeabilidad Capilar , Células Endoteliales/virología , Células Endoteliales/metabolismo , Células Endoteliales/patologíaRESUMEN
Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1ß, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.
Asunto(s)
Curcumina , Nanotubos de Carbono , Humanos , Curcumina/farmacología , Nanotubos de Carbono/toxicidad , Nanotubos de Carbono/química , Antioxidantes/farmacología , Inflamación , Antiinflamatorios/farmacologíaRESUMEN
SARS-CoV-2 Envelope protein (E) is one of the crucial components in virus assembly and pathogenesis. The current study investigated its role in the SARS-CoV-2-mediated cell death and inflammation in lung and gastrointestinal epithelium and its effect on the gastrointestinal-lung axis. We observed that transfection of E protein increases the lysosomal pH and induces inflammation in the cell. The study utilizing Ethidium bromide/Acridine orange and Hoechst/Propidium iodide staining demonstrated necrotic cell death in E protein transfected cells. Our study revealed the role of the necroptotic marker RIPK1 in cell death. Additionally, inhibition of RIPK1 by its specific inhibitor Nec-1s exhibits recovery from cell death and inflammation manifested by reduced phosphorylation of NFκB. The E-transfected cells' conditioned media induced inflammation with differential expression of inflammatory markers compared to direct transfection in the gastrointestinal-lung axis. In conclusion, SARS-CoV-2 E mediates inflammation and necroptosis through RIPK1, and the E-expressing cells' secretion can modulate the gastrointestinal-lung axis. Based on the data of the present study, we believe that during severe COVID-19, necroptosis is an alternate mechanism of cell death besides ferroptosis, especially when the disease is not associated with drastic increase in serum ferritin.
Asunto(s)
Apoptosis , COVID-19 , Humanos , SARS-CoV-2 , Necroptosis/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Pulmón/metabolismo , Inflamación/patología , Colon/metabolismo , Colon/patologíaRESUMEN
Viruses utilize clever strategies of interacting with various cellular factors, to remodel an organelle function, for the establishment of successful infection. In recent decades, numerous studies revealed the exploitation of the peroxisomal compartment by viruses. Epstein-Barr virus (EBV) is a ubiquitous virus linked with various cancers and neurological disorders. Till now, there is no report regarding the impacts of EBV infection on peroxisomal compartment. Therefore, we investigate the modulation of peroxisomal proteins in EBV transformed cell lines and during acute EBV infection. EBV positive Burkitt lymphoma cells of different origins as EBV transformed cells along with EBV negative Burkitt lymphoma cells as a control were used in this study. For acute EBV infection experiments, we infected peripheral blood mononuclear cells with EBV for three days. Thereafter, analyzed the gene expression patterns of peroxisomal proteins using qPCR. In addition, quantification of lipid content was performed by using fluorescence microscopy and biochemical assay. Our results revealed that, the peroxisomal proteins were distinctly regulated in EBV transformed cells and during acute EBV infection. Interestingly, PEX19 was significantly upregulated in EBV infected cells. Further, in correlation with the altered expression of peroxisomes proteins involved in lipid metabolism, the EBV transformed cells showed lower lipid abundance. Conversely, the lipid levels were increased during acute EBV infection. Our study highlights the importance of investigating the manipulation of the peroxisomal compartment by putting forward various differentially expressed proteins upon EBV infection. This study provides a base for further investigation to delve deeper into EBV and peroxisomal interactions. The future research in this direction could provide involvement of novel signaling pathways to understand molecular changes during EBV mediated pathologies.
Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Humanos , Herpesvirus Humano 4/genética , Leucocitos Mononucleares/metabolismo , LípidosRESUMEN
Cancer is characterized by mutagenic events that lead to disrupted cell signaling and cellular functions. It is one of the leading causes of death worldwide. Literature suggests that pathogens, mainly Helicobacter pylori and Epstein-Barr virus (EBV), have been associated with the etiology of human cancer. Notably, their co-infection may lead to gastric cancer. Pathogen-mediated DNA damage could be the first and crucial step in the carcinogenesis process that modulates numerous cellular signaling pathways. Altogether, it dysregulates the metabolic pathways linked with cell growth, apoptosis, and DNA repair. Modulation in these pathways leads to abnormal growth and proliferation. Several signaling pathways such RTK, RAS/MAPK, PI3K/Akt, NFκB, JAK/STAT, HIF1α, and Wnt/ß-catenin are known to be altered in cancer. Therefore, this review focuses on the oncogenic roles of H. pylori, EBV, and its associated signaling cascades in various cancers. Scrutinizing these signaling pathways is crucial and may provide new insights and targets for preventing and treating H. pylori and EBV-associated cancers.
Asunto(s)
Infecciones por Virus de Epstein-Barr , Helicobacter pylori , Neoplasias Gástricas , Humanos , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Fosfatidilinositol 3-Quinasas , Transducción de SeñalRESUMEN
Rab5B is a small monomeric G protein that regulates early endocytosis and controls signaling pathways related to cell growth, survival, and apoptosis. Dysregulation of Rab5B protein expression has been linked to the development of several cancers such as leukemia, lymphoma, kidney, prostate, ovarian, breast cancer, etc. Our research shows the first attempt to identify inhibitors that can target Rab5B GTPase. In this study, we performed molecular docking using Autodock Vina 1.5.6 and identified eight molecules with docking scores ranging from -9.8 to -10.6 kcal/mol. Thereafter, we examined the pharmacological characteristics of these compounds, and selected compounds were further analyzed for their conformational dynamics and thermodynamic stability using molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA)-based free energy calculations. Notably, our findings revealed that strychnine had the highest binding affinity to Rab5B followed by anonaine, helioxanthin, and taiwanin E, with a ΔGbind value of -21.43, -17.11, -15.11, and -14.09 kcal/mol respectively. The binding free energy calculations showed that Van der Waals interactions are the primary contributor to the binding between Rab5B and the inhibitor. The interaction between the inhibitor and Rab5B was shown to be controlled by certain hot spot residues, including Phe45, Tyr48, Ala64, and Ala30. Overall, we believe that these findings could facilitate the exploration and development of potential hits against Rab5B, subject to optimization and further research. Rab5B inhibitory binding affinity of natural plants active compounds.
RESUMEN
BACKGROUND/AIMS: Cells require regular maintenance of proteostasis. Synthesis of new polypeptides and elimination of damaged or old proteins is an uninterrupted mechanism essential for a healthy cellular environment. Impairment in the removal of misfolded proteins can disturb proteostasis; such toxic aggregation of misfolded proteins can act as a primary risk factor for neurodegenerative diseases and imperfect ageing. The critical challenge is to design effective protein quality control (PQC) based molecular tactics that could potentially eliminate aggregation-prone protein load from the cell. Still, targeting specific components of the PQC pathway for the suppression of proteotoxic insults retains several challenges. Earlier, we had observed that LRSAM1 promotes the degradation of aberrant proteins. Here, we examined the effect of resveratrol, a stilbenoid phytoalexin compound, treatment on LRSAM1 E3 ubiquitin ligase, involved in the spongiform neurodegeneration. METHODS: In this study, we reported induction of mRNA and protein levels of LRSAM1 in response to resveratrol treatment via RT-PCR, immunoblotting, and immunofluorescence analysis. The LRSAM1-mediated proteasomal-based clearance of misfolded proteins was also investigated via proteasome activity assays, immunoblotting and immunofluorescence analysis. The increased stability of LRSAM1 by resveratrol was demonstrated by cycloheximide chase analysis. RESULTS: Here, we show that resveratrol treatment induces LRSAM1 E3 ubiquitin ligase expression levels. Further, our findings suggest that overexpression of LRSAM1 significantly elevates proteasome activities and improves the degradation of bona fide heat-denatured luciferase protein. Exposure of resveratrol not only slows down the turnover of LRSAM1 but also effectively degrades abnormal proteinaceous inclusions, which eventually promotes cell viability. CONCLUSION: Our findings suggest that resveratrol facilitates LRSAM1 endogenous establishment, which consequently promotes the proteasome machinery for effective removal of intracellular accumulated misfolded or proteasomal-designated substrates. Altogether, our study proposes a promising molecular approach to specifically trigger PQC signaling for efficacious rejuvenation of defective proteostasis via activation of overburdened proteolytic machinery.
Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina-Proteína Ligasas , Cicloheximida , Luciferasas , Péptidos , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero , Resveratrol/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
INTRODUCTION: Many pathogens have coexisted with humans for millennia and can cause chronic inflammation which is the cause of gastritis. Gastric cancer (GC) is associated with 8.8% of cancer related deaths, making it one of the leading causes of cancer related deaths worldwide. This review is intended to give brief information about Helicobacter pylori (H. pylori), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV) role in GC and associated kinases. These organisms can trigger multiple cellular pathways aiming for unnatural cellular proliferation, apoptosis, migration and inflammatory response. Kinases also can activate and deactivate the signalling leading to aforementioned pathways. Therefore, studying kinases is inevitable. MATERIAL AND METHODS: This review is the comprehensive collection of information from different data sources such as journals, book, book chapters and verified online information. CONCLUSION: Kinase amplifications could be used as diagnostic, prognostic, and predictive biomarkers in various cancer types. Hence targeting kinase and related signalling molecules could be considered as a potential approach to prevent cancer through these organisms. Here we summarize the brief information about the role of kinases, signalling and their therapeutics in GC concerning H. pylori, EBV and HCMV.
Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Infecciones por Helicobacter/complicaciones , Herpesvirus Humano 4 , Humanos , Neoplasias Gástricas/complicaciones , Neoplasias Gástricas/terapiaRESUMEN
Epstein-Barr virus (EBV) was discovered as the first human tumor virus more than 50 years ago. EBV infects more than 90% of the human population worldwide and is associated with numerous hematologic malignancies and epithelial malignancies. EBV establishes latent infection in B cells, which is the typical program seen in lymphomagenesis. Understanding EBV-mediated transcription regulatory networks is one of the current challenges that will uncover new insights into the mechanism of viral-mediated lymphomagenesis. Here, we describe the regulatory profiles of several cellular factors (E2F6, E2F1, Rb, HDAC1, and HDAC2) together with EBV latent nuclear antigens using next-generation sequencing (NGS) analysis. Our results show that the E2F-Rb-HDAC complex exhibits similar distributions in genomic regions of EBV-positive cells and is associated with oncogenic super-enhancers involving long-range regulatory regions. Furthermore, EBV latent antigens cooperatively hijack this complex to bind at KLFs gene loci and facilitate KLF14 gene expression in lymphoblastoid cell lines (LCLs). These results demonstrate that EBV latent antigens can function as master regulators of this multisubunit repressor complex (E2F-Rb-HDAC) to reverse its suppressive activities and facilitate downstream gene expression that can contribute to viral-induced lymphomagenesis. These results provide novel insights into targets for the development of new therapeutic interventions for treating EBV-associated lymphomas.IMPORTANCE Epstein-Barr virus (EBV), as the first human tumor virus, infects more than 90% of the human population worldwide and is associated with numerous human cancers. Exploring EBV-mediated transcription regulatory networks is critical to understand viral-associated lymphomagenesis. However, the detailed mechanism is not fully explored. Now we describe the regulatory profiles of the E2F-Rb-HDAC complex together with EBV latent antigens, and we found that EBV latent antigens cooperatively facilitate KLF14 expression by antagonizing this multisubunit repressor complex in EBV-positive cells. This provides potential therapeutic targets for the treatment of EBV-associated cancers.
Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Linfocitos B/virología , Línea Celular , Factor de Transcripción E2F1 , Factor de Transcripción E2F6 , Antígenos Nucleares del Virus de Epstein-Barr , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/patogenicidad , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Humanos , Infección Latente , Proteína de Retinoblastoma , Proteínas Virales/metabolismo , Latencia del VirusRESUMEN
[This corrects the article DOI: 10.1371/journal.ppat.1007253.].
RESUMEN
According to the WHO, on October 16, 2020, the spreading of the SARS-CoV-2, responsible for the COVID-19 pandemic, reached 235 countries and territories, and resulting in more than 39 million confirmed cases and 1.09 million deaths globally. Monitoring of the virus outbreak is one of the main activities pursued to limiting the number of infected people and decreasing the number of deaths that have caused high pressure on the health care, social, and economic systems of different countries. Wastewater based epidemiology (WBE), already adopted for the surveillance of life style and health conditions of communities, shows interesting features for the monitoring of the COVID-19 diffusion. Together with wastewater, the analysis of airborne particles has been recently suggested as another useful tool for detecting the presence of SARS-CoV-2 in given areas. The present review reports the status of research currently performed concerning the monitoring of SARS-CoV-2 spreading by WBE and airborne particles. The former have been more investigated, whereas the latter is still at a very early stage, with a limited number of very recent studies. Nevertheless, the main results highlights in both cases necessitate more research activity for better understating and defining the biomarkers and the related sampling and analysis procedures to be used for this important aim.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , ARN Viral , Aguas ResidualesRESUMEN
Kaposi's sarcoma associated herpesvirus (KSHV) infection stabilizes hypoxia inducible factors (HIFs). The interaction between KSHV encoded factors and HIFs plays a critical role in KSHV latency, reactivation and associated disease phenotypes. Besides modulation of large-scale signaling, KSHV infection also reprograms the metabolic activity of infected cells. However, the mechanism and cellular pathways modulated during these changes are poorly understood. We performed comparative RNA sequencing analysis on cells with stabilized hypoxia inducible factor 1 alpha (HIF1α) of KSHV negative or positive background to identify changes in global and metabolic gene expression. Our results show that hypoxia induces glucose dependency of KSHV positive cells with high glucose uptake and high lactate release. We identified the KSHV-encoded vGPCR, as a novel target of HIF1α and one of the main viral antigens of this metabolic reprogramming. Bioinformatics analysis of vGPCR promoter identified 9 distinct hypoxia responsive elements which were activated by HIF1α in-vitro. Expression of vGPCR alone was sufficient for induction of changes in the metabolic phenotype similar to those induced by KSHV under hypoxic conditions. Silencing of HIF1α rescued the hypoxia associated phenotype of KSHV positive cells. Analysis of the host transcriptome identified several common targets of hypoxia as well as KSHV encoded factors and other synergistically activated genes belonging to cellular pathways. These include those involved in carbohydrate, lipid and amino acids metabolism. Further DNA methyltranferases, DNMT3A and DNMT3B were found to be regulated by either KSHV, hypoxia, or both synergistically at the transcript and protein levels. This study showed distinct and common, as well as synergistic effects of HIF1α and KSHV-encoded proteins on metabolic reprogramming of KSHV-infected cells in the hypoxia.
Asunto(s)
Linfocitos B/virología , Herpesvirus Humano 8/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Linfocitos B/metabolismo , Western Blotting , Regulación Viral de la Expresión Génica , Glucosa/metabolismo , Herpesvirus Humano 8/genética , Humanos , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/análisis , Ácido Láctico/metabolismo , Leucocitos Mononucleares/virología , Metaboloma , Microscopía Confocal , Fenotipo , Regiones Promotoras Genéticas , ARN Viral/química , Especies Reactivas de Oxígeno/análisis , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Análisis de Secuencia de ARN , Activación TranscripcionalRESUMEN
Shugoshin-1 (Sgo1) protects the integrity of the centromeres, and H2A phosphorylation is critical for this process. The mitotic checkpoint kinase Bub1, phosphorylates H2A and ensures fidelity of chromosome segregation and chromosome number. Oncogenic KSHV induces genetic alterations through chromosomal instability (CIN), and its essential antigen LANA regulates Bub1. We show that LANA inhibits Bub1 phosphorylation of H2A and Cdc20, important for chromosome segregation and mitotic signaling. Inhibition of H2A phosphorylation at residue T120 by LANA resulted in dislocation of Sgo1, and cohesin from the centromeres. Arrest of Cdc20 phosphorylation also rescued degradation of Securin and Cyclin B1 at mitotic exit, and interaction of H2A, and Cdc20 with Bub1 was inhibited by LANA. The N-terminal nuclear localization sequence domain of LANA was essential for LANA and Bub1 interaction, reversed LANA inhibited phosphorylation of H2A and Cdc20, and attenuated LANA-induced aneuploidy and cell proliferation. This molecular mechanism whereby KSHV-induced CIN, demonstrated that the NNLS of LANA is a promising target for development of anti-viral therapies targeting KSHV associated cancers.
Asunto(s)
Aneuploidia , Antígenos Virales/genética , Antígenos Virales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Herpesvirus Humano 8/inmunología , Herpesvirus Humano 8/patogenicidad , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígenos Virales/química , Proteínas Cdc20/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular , Centrómero/metabolismo , Inestabilidad Cromosómica , Ciclina B1/metabolismo , Herpesvirus Humano 8/genética , Histonas/metabolismo , Humanos , Mitosis , Modelos Biológicos , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/química , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Securina/metabolismoRESUMEN
BACKGROUND: Helicobacter pylori (H. pylori) and Epstein - Barr virus (EBV) plays a significant role in aggressive gastric cancer (GC). The investigation of genes associated with these pathogens and host kinases may be essential to understand the early and dynamic progression of GC. AIM: The study aimed to demonstrate the coinfection of EBV and H. pylori in the AGS cells through morphological changes, expression of the kinase and the probable apoptotic pathways. METHODS: Genomic DNA isolation of H. pylori and its characterization from clinical samples were performed. RT-qPCR of kinases was applied to scrutinize the gene expression of kinases in co-infected GC in a direct and indirect (separated through insert size 0.45 µm) H. pylori infection set up. Morphological changes in co-infected GC were quantified by measuring the tapering ends of gastric epithelial cells. Gene expression profiling of apoptotic genes was assessed through RT-qPCR. RESULTS: An interleukin-2-inducible T-cell kinase (ITK) showed significant upregulation with indirect H. pylori infection. Moreover, Ephrin type-B receptor six precursors (EPHB6) and Tyrosine-protein kinase Fyn (FYN) showed significant upregulation with direct coinfection. The tapering ends in AGS cells were found to be extended after 12 h. A total of 24 kinase genes were selected, out of which EPHB6, ITK, FYN, and TYK2 showed high expression as early as 12 h. These kinases may lead to rapid morphological changes in co-infected gastric cells. Likewise, apoptotic gene expression such as APAF-1 and Bcl2 family genes such as BAD, BID, BIK, BIM, BAX, AND BAK were significantly down-regulated in co-infected AGS cells. CONCLUSION: All the experiments were performed with novel isolates of H. pylori isolated from central India, for the functional assessment of GC. The effect of coinfection with EBV was more profoundly observed on morphological changes in AGS cells at 12 h as quantified by measuring the tapering of ends. This study also identifies the kinase and apoptotic genes modulated in co-infected cells, through direct and indirect approaches. We report that ITK, EPHB6, TYK2, FYN kinase are enhanced, whereas apoptotic genes such as APAF-1, BIK, FASL, BAX are significantly down-regulated in AGS cells coinfected with EBV and H. pylori.
Asunto(s)
Infecciones por Virus de Epstein-Barr/genética , Infecciones por Helicobacter/genética , Fosfotransferasas/genética , Neoplasias Gástricas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Coinfección/genética , Coinfección/microbiología , Coinfección/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/microbiología , Infecciones por Virus de Epstein-Barr/virología , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Mucosa Gástrica/virología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/virología , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Humanos , Fosfotransferasas/clasificación , Neoplasias Gástricas/complicaciones , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/virologíaRESUMEN
The latent EBV nuclear antigen 3C (EBNA3C) is required for transformation of primary human B lymphocytes. Most mature B-cell malignancies originate from malignant transformation of germinal center (GC) B-cells. The GC reaction appears to have a role in malignant transformation, in which a major player of the GC reaction is Bcl6, a key regulator of this process. We now demonstrate that EBNA3C contributes to B-cell transformation by targeted degradation of Bcl6. We show that EBNA3C can physically associate with Bcl6. Notably, EBNA3C expression leads to reduced Bcl6 protein levels in a ubiquitin-proteasome dependent manner. Further, EBNA3C inhibits the transcriptional activity of the Bcl6 promoter through interaction with the cellular protein IRF4. Bcl6 degradation induced by EBNA3C rescued the functions of the Bcl6-targeted downstream regulatory proteins Bcl2 and CCND1, which resulted in increased proliferation and G1-S transition. These data provide new insights into the function of EBNA3C in B-cell transformation during GC reaction, and raises the possibility of developing new targeted therapies against EBV-associated cancers.
Asunto(s)
Proliferación Celular , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/fisiopatología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Regulación de la Expresión Génica , Herpesvirus Humano 4/genética , Interacciones Huésped-Patógeno , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteolisis , Proteínas Proto-Oncogénicas c-bcl-6/genéticaRESUMEN
Epstein-Barr virus (EBV) is considered a ubiquitous herpesvirus with the ability to cause latent infection in humans worldwide. EBV-association is evidently linked to different types of human malignancies, mainly of epithelial and lymphoid origin. Of interest is the EBV nuclear antigen 3C (EBNA3C) which is critical for EBV-mediated immortalization. Recently, EBNA3C was shown to bind the E2F1 transcription regulator. The E2F transcription factors have crucial roles in various cellular functions, including cell cycle, DNA replication, DNA repair, cell mitosis, and cell fate. Specifically, E2F6, one of the unique E2F family members, is known to be a pRb-independent transcription repressor of E2F-target genes. In our current study, we explore the role of EBNA3C in regulating E2F6 activities. We observed that EBNA3C plays an important role in inducing E2F6 expression in LCLs. Our study also shows that EBNA3C physically interacts with E2F6 at its amino and carboxy terminal domains and they form a protein complex in human cells. In addition, EBNA3C stabilizes the E2F6 protein and is co-localized in the nucleus. We also demonstrated that both EBNA3C and E2F6 contribute to reduction in E2F1 transcriptional activity. Moreover, E2F1 forms a protein complex with EBNA3C and E2F6, and EBNA3C competes with E2F1 for E2F6 binding. E2F6 is also recruited by EBNA3C to the E2F1 promoter, which is critical for EBNA3C-mediated cell proliferation. These results demonstrate a critical role for E2F family members in EBV-induced malignancies, and provide new insights for targeting E2F transcription factors in EBV-associated cancers as potential therapeutic intervention strategies.
Asunto(s)
Proliferación Celular , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F6/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Transcripción Genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F6/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , HumanosRESUMEN
UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) maintains two modes of life cycle, the latent and lytic phases. To evade the attack of the cell host's immune system, KSHV switches from the lytic to the latent phase, a phase in which only a few of viral proteins are expressed. The mechanism by which KSHV evades the attack of the immune system and establishes latency has not been fully understood. Major histocompatibility complex class II (MHC-II) molecules are key components of the immune system defense mechanism against viral infections. Here we report that HLA-DRα, a member of the MHC-II molecules, was downregulated by the replication and transcription activator (RTA) protein encoded by KSHV ORF50, an important regulator of the viral life cycle. RTA not only downregulated HLA-DRα at the protein level through direct binding and degradation through the proteasome pathway but also indirectly downregulated the protein level of HLA-DRα by enhancing the expression of MARCH8, a member of the membrane-associated RING-CH (MARCH) proteins. Our findings indicate that KSHV RTA facilitates evasion of the virus from the immune system through manipulation of HLA-DRα. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) has a causal role in a number of human cancers, and its persistence in infected cells is controlled by the host's immune system. The mechanism by which KSHV evades an attack by the immune system has not been well understood. This work represents studies which identify a novel mechanism by which the virus can facilitate evasion of an immune system. We now show that RTA, the replication and transcription activator encoded by KSHV (ORF50), can function as an E3 ligase to degrade HLA-DRα. It can directly bind and induce degradation of HLA-DRα through the ubiquitin-proteasome degradation pathway. In addition to the direct regulation of HLA-DRα, RTA can also indirectly downregulate the level of HLA-DRα protein by upregulating transcription of MARCH8. Increased MARCH8 results in the downregulation of HLA-DRα. Furthermore, we also demonstrate that expression of HLA-DRα was impaired in KSHV de novo infection.
Asunto(s)
Regulación hacia Abajo , Cadenas alfa de HLA-DR/biosíntesis , Herpesvirus Humano 8/patogenicidad , Interacciones Huésped-Patógeno , Proteínas Inmediatas-Precoces/metabolismo , Evasión Inmune , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , HumanosRESUMEN
UNLABELLED: Latent DNA replication of Kaposi's sarcoma-associated herpesvirus (KSHV) initiates at the terminal repeat (TR) element and requires trans-acting elements, both viral and cellular, such as ORCs, MCMs, and latency-associated nuclear antigen (LANA). However, how cellular proteins are recruited to the viral genome is not very clear. Here, we demonstrated that the host cellular protein, Bub1, is involved in KSHV latent DNA replication. We show that Bub1 constitutively interacts with proliferating cell nuclear antigen (PCNA) via a highly conserved PIP box motif within the kinase domain. Furthermore, we demonstrated that Bub1 can form a complex with LANA and PCNA in KSHV-positive cells. This strongly indicated that Bub1 serves as a scaffold or molecular bridge between LANA and PCNA. LANA recruited PCNA to the KSHV genome via Bub1 to initiate viral replication in S phase and interacted with PCNA to promote its monoubiquitination in response to UV-induced damage for translesion DNA synthesis. This resulted in increased survival of KSHV-infected cells. IMPORTANCE: During latency in KSHV-infected cells, the viral episomal DNA replicates once each cell cycle. KSHV does not express DNA replication proteins during latency. Instead, KSHV LANA recruits the host cell DNA replication machinery to the replication origin. However, the mechanism by which LANA mediates replication is uncertain. Here, we show that LANA is able to form a complex with PCNA, a critical protein for viral DNA replication. Furthermore, our findings suggest that Bub1, a spindle checkpoint protein, serves as a scaffold or molecular bridge between LANA and PCNA. Our data further support a role for Bub1 and LANA in PCNA-mediated cellular DNA replication processes as well as monoubiquitination of PCNA in response to UV damage. These data reveal a therapeutic target for inhibition of KSHV persistence in malignant cells.
Asunto(s)
Antígenos Virales/genética , ADN Viral/genética , Genoma Viral , Herpesvirus Humano 8/genética , Proteínas Nucleares/genética , Osteoblastos/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas Serina-Treonina Quinasas/genética , Secuencia de Aminoácidos , Antígenos Virales/metabolismo , Línea Celular , Supervivencia Celular , Replicación del ADN , ADN Viral/metabolismo , Regulación de la Expresión Génica , Herpesvirus Humano 8/metabolismo , Interacciones Huésped-Patógeno , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Osteoblastos/virología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fase S , Transducción de Señal , Secuencias Repetidas Terminales , Ubiquitinación , Latencia del Virus , Replicación ViralRESUMEN
Epstein-Barr virus (EBV), a ubiquitous human herpesvirus, can latently infect the human population. EBV is associated with several types of malignancies originating from lymphoid and epithelial cell types. EBV latent antigen 3C (EBNA3C) is essential for EBV-induced immortalization of B-cells. The Moloney murine leukemia provirus integration site (PIM-1), which encodes an oncogenic serine/threonine kinase, is linked to several cellular functions involving cell survival, proliferation, differentiation, and apoptosis. Notably, enhanced expression of Pim-1 kinase is associated with numerous hematological and non-hematological malignancies. A higher expression level of Pim-1 kinase is associated with EBV infection, suggesting a crucial role for Pim-1 in EBV-induced tumorigenesis. We now demonstrate a molecular mechanism which reveals a direct role for EBNA3C in enhancing Pim-1 expression in EBV-infected primary B-cells. We also showed that EBNA3C is physically associated with Pim-1 through its amino-terminal domain, and also forms a molecular complex in B-cells. EBNA3C can stabilize Pim-1 through abrogation of the proteasome/Ubiquitin pathway. Our results demonstrate that EBNA3C enhances Pim-1 mediated phosphorylation of p21 at the Thr145 residue. EBNA3C also facilitated the nuclear localization of Pim-1, and promoted EBV transformed cell proliferation by altering Pim-1 mediated regulation of the activity of the cell-cycle inhibitor p21/WAF1. Our study demonstrated that EBNA3C significantly induces Pim-1 mediated proteosomal degradation of p21. A significant reduction in cell proliferation of EBV-transformed LCLs was observed upon stable knockdown of Pim-1. This study describes a critical role for the oncoprotein Pim-1 in EBV-mediated oncogenesis, as well as provides novel insights into oncogenic kinase-targeted therapeutic intervention of EBV-associated cancers.