Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 18, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243280

RESUMEN

The production and release of tumor-derived small extracellular vesicles (TDSEVs) from cancerous cells play a pivotal role in the propagation of cancer, through genetic and biological communication with healthy cells. TDSEVs are known to orchestrate the invasion-metastasis cascade via diverse pathways. Regulation of early metastasis processes, pre-metastatic niche formation, immune system regulation, angiogenesis initiation, extracellular matrix (ECM) remodeling, immune modulation, and epithelial-mesenchymal transition (EMT) are among the pathways regulated by TDSEVs. MicroRNAs (miRs) carried within TDSEVs play a pivotal role as a double-edged sword and can either promote metastasis or inhibit cancer progression. TDSEVs can serve as excellent markers for early detection of tumors, and tumor metastases. From a therapeutic point of view, the risk of cancer metastasis may be reduced by limiting the production of TDSEVs from tumor cells. On the other hand, TDSEVs represent a promising approach for in vivo delivery of therapeutic cargo to tumor cells. The present review article discusses the recent developments and the current views of TDSEVs in the field of cancer research and clinical applications.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias , Humanos , Relevancia Clínica , Neoplasias/patología , MicroARNs/genética , Comunicación Celular , Transición Epitelial-Mesenquimal , Microambiente Tumoral , Metástasis de la Neoplasia/patología
2.
Semin Cancer Biol ; 86(Pt 2): 1086-1104, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35218902

RESUMEN

Recent mounting evidence has revealed extensive genetic heterogeneity within tumors that drive phenotypic variation affecting key cancer pathways, making cancer treatment extremely challenging. Diverse cancer types display resistance to treatment and show patterns of relapse following therapy. Therefore, efforts are required to address tumor heterogeneity by developing a broad-spectrum therapeutic approach that combines targeted therapies. Inflammation has been progressively documented as a vital factor in tumor advancement and has consequences in epigenetic variations that support tumor instigation, encouraging all the tumorigenesis phases. Increased DNA damage, disrupted DNA repair mechanisms, cellular proliferation, apoptosis, angiogenesis, and its incursion are a few pro-cancerous outcomes of chronic inflammation. A clear understanding of the cellular and molecular signaling mechanisms of tumor-endorsing inflammation is necessary for further expansion of anti-cancer therapeutics targeting the crosstalk between tumor development and inflammatory processes. Multiple inflammatory signaling pathways, such as the NF-κB signaling pathway, JAK-STAT signaling pathway, MAPK signaling, PI3K/AKT/mTOR signaling, Wnt signaling cascade, and TGF-ß/Smad signaling, have been found to regulate inflammation, which can be modulated using various factors such as small molecule inhibitors, phytochemicals, recombinant cytokines, and nanoparticles (NPs) in conjugation to phytochemicals to treat cancer. Researchers have identified multiple targets to specifically alter inflammation in cancer therapy to restrict malignant progression and improve the efficacy of cancer therapy. siRNA-and shRNA-loaded NPs have been observed to downregulate STAT3 signaling pathways and have been employed in studies to target tumor malignancies. This review highlights the pathways involved in the interaction between tumor advancement and inflammatory progression, along with the novel approaches of nanotechnology-based drug delivery systems currently used to target inflammatory signaling pathways to combat cancer.


Asunto(s)
Nanomedicina , Fosfatidilinositol 3-Quinasas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Comprensión , Recurrencia Local de Neoplasia , Transducción de Señal , Inflamación/tratamiento farmacológico
3.
J Cell Mol Med ; 27(11): 1603-1607, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37183560

RESUMEN

This short communication will enlighten the readers about the exosome and the epithelial-mesenchymal transition (EMT) related to several complicated events. It also highlighted the therapeutic potential of exosomes against EMT. Exosome toxicology, exosome heterogeneity, and a single exosome profiling approach are also covered in this article. In the future, exosomes could help us get closer to cancer vaccine and precision oncology.


Asunto(s)
Exosomas , Neoplasias , Humanos , Transición Epitelial-Mesenquimal , Transducción de Señal , Medicina de Precisión
4.
Mol Cancer ; 22(1): 105, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415164

RESUMEN

Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Inmunoterapia/métodos , Terapia Combinada , Terapia Molecular Dirigida/métodos
5.
Mol Cancer ; 22(1): 22, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721153

RESUMEN

Malignant brain tumors rank among the most challenging type of malignancies to manage. The current treatment protocol commonly entails surgery followed by radiotherapy and/or chemotherapy, however, the median patient survival rate is poor. Recent developments in immunotherapy for a variety of tumor types spark optimism that immunological strategies may help patients with brain cancer. Chimeric antigen receptor (CAR) T cells exploit the tumor-targeting specificity of antibodies or receptor ligands to direct the cytolytic capacity of T cells. Several molecules have been discovered as potential targets for immunotherapy-based targeting, including but not limited to EGFRvIII, IL13Rα2, and HER2. The outstanding clinical responses to CAR T cell-based treatments in patients with hematological malignancies have generated interest in using this approach to treat solid tumors. Research results to date support the astounding clinical response rates of CD19-targeted CAR T cells, early clinical experiences in brain tumors demonstrating safety and evidence for disease-modifying activity, and the promise for further advances to ultimately assist patients clinically. However, several variable factors seem to slow down the progress rate regarding treating brain cancers utilizing CAR T cells. The current study offers a thorough analysis of CAR T cells' promise in treating brain cancer, including design and delivery considerations, current strides in clinical and preclinical research, issues encountered, and potential solutions.


Asunto(s)
Neoplasias Encefálicas , Inmunoterapia Adoptiva , Humanos , Proteínas Adaptadoras Transductoras de Señales , Anticuerpos , Antígenos CD19 , Neoplasias Encefálicas/terapia , Muerte Celular , Receptores Quiméricos de Antígenos , Linfocitos T
6.
Curr Issues Mol Biol ; 45(2): 903-917, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36826003

RESUMEN

BACKGROUND: Globally, diabetes mellitus is the most common cause of premature mortality after cardiovascular diseases and tobacco chewing. It is a heterogeneous metabolic disorder characterised by the faulty metabolism of carbohydrates, fats and proteins as a result of defects in insulin secretion or resistance. It was estimated that approximately 463 million of the adult population are suffering from diabetes mellitus, which may grow up to 700 million by 2045. Solanum indicum is distributed all over India and all of the tropical and subtropical regions of the world. The different parts of the plant such as the roots, leaves and fruits were used traditionally in the treatment of cough, asthma and rhinitis. However, the hypoglycaemic activity of the plant is not scientifically validated. PURPOSE: The present study aimed to evaluate the antioxidant, antidiabetic and anti-hyperlipidaemic activity of methanolic fruit extract of Solanum indicum (SIE) in streptozotocin (STZ) induced diabetic rats. METHOD: Experimentally, type II diabetes was induced in rats by an i.p. injection of STZ at a dose of 60 mg/kg. The effect of the fruit extract was evaluated at doses of 100 and 200 mg/kg body weight in STZ-induced diabetic rats for 30 days. RESULT: The oral administration of fruit extract caused a significant (p < 0.05) reduction in the blood glucose level with a more prominent effect at 200 mg/kg. The fruit extract showed dose-dependent α-amylase and α-glycosidase inhibitory activity. It reduced the serum cholesterol and triglyceride levels remarkably in diabetic rats compared to normal. The extract showed the reduced activity of endogenous antioxidants, superoxide dismutase, glutathione peroxidase and catalase in the liver of STZ diabetic rats. CONCLUSION: The result confirmed that the fruit extract of Solanum indicum showed a dose-dependent blood glucose lowering effect and significantly reduced elevated blood cholesterol and triglycerides. It prevented oxidative stress associated with type II diabetes in STZ rats.

7.
Biomarkers ; 28(6): 502-518, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37352015

RESUMEN

Breast cancer (BC) remains the most challenging global health crisis of the current decade, impacting a large population of females annually. In the field of cancer research, the discovery of extracellular vesicles (EVs), specifically exosomes (a subpopulation of EVs), has marked a significant milestone. In general, exosomes are released from all active cells but tumour cell-derived exosomes (TDXs) have a great impact (TDXs miRNAs, proteins, lipid molecules) on cancer development and progression. TDXs regulate multiple events in breast cancer such as tumour microenvironment remodelling, immune cell suppression, angiogenesis, metastasis (EMT-epithelial mesenchymal transition, organ-specific metastasis), and therapeutic resistance. In BC, early detection is the most challenging event, exosome-based BC screening solved the problem. Exosome-based BC treatment is a sign of the transforming era of liquid biopsy, it is also a promising therapeutic tool for breast cancer. Exosome research goes to closer precision oncology via a single exosome profiling approach. Our hope is that this review will serve as motivation for researchers to explore the field of exosomes and develop an efficient, and affordable theranostics approach for breast cancer.


Asunto(s)
Neoplasias de la Mama , Exosomas , MicroARNs , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Medicina de Precisión , Relevancia Clínica , Exosomas/genética , Exosomas/patología , Microambiente Tumoral/genética
8.
Nature ; 550(7674): 80-83, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28980637

RESUMEN

Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

9.
Appl Microbiol Biotechnol ; 107(7-8): 2155-2167, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36922438

RESUMEN

Genus Crinum L. is a member of the Amaryllidaceae family having beautiful, huge, ornamental plants with umbels of lily-like blooms that are found in tropical and subtropical climates all over the world. For thousands of years, Crinum has been used as a traditional medicine to treat illnesses and disorders. Numerous distinct alkaloids of the Amaryllidaceae group, whose most well-known properties include analgesic, anticholinergic, antitumor, and antiviral, have recently been discovered by phytochemical analyses. However, because of decades of overexploitation for their economically significant bioactive ingredients and poor seed viability and germination rates, these plants are now threatened in their native environments. Because of these factors, researchers are investigating micropropagation techniques to optimize phytochemicals in vitro. This review's objective is to offer details on the distribution, phytochemistry, micropropagation, in vitro galanthamine synthesis, and pharmacology which will help to design biotechnological techniques for the preservation, widespread multiplication, and required secondary metabolite production from Crinum spp. KEY POINTS: • Botanical description and phytochemical profile of Crinum spp. • In vitro micropropagation method of Crinum sp. • Bioactive compound galanthamine isolation techniques and its pharmacological properties.


Asunto(s)
Alcaloides , Crinum , Crinum/química , Extractos Vegetales/farmacología , Galantamina , Alcaloides/química , Fitoquímicos
10.
Mar Drugs ; 21(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37103352

RESUMEN

Chitin is the second most abundant biopolymer consisting of N-acetylglucosamine units and is primarily derived from the shells of marine crustaceans and the cell walls of organisms (such as bacteria, fungi, and algae). Being a biopolymer, its materialistic properties, such as biodegradability, and biocompatibility, make it a suitable choice for biomedical applications. Similarly, its deacetylated derivative, chitosan, exhibits similar biocompatibility and biodegradability properties, making it a suitable support material for biomedical applications. Furthermore, it has intrinsic material properties such as antioxidant, antibacterial, and antitumor. Population studies have projected nearly 12 million cancer patients across the globe, where most will be suffering from solid tumors. One of the shortcomings of potent anticancer drugs is finding a suitable cellular delivery material or system. Therefore, identifying new drug carriers to achieve effective anticancer therapy is becoming essential. This paper focuses on the strategies implemented using chitin and chitosan biopolymers in drug delivery for cancer treatment.


Asunto(s)
Antineoplásicos , Quitosano , Nanopartículas , Neoplasias , Humanos , Quitosano/uso terapéutico , Quitina , Sistemas de Liberación de Medicamentos , Biopolímeros , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
11.
Mol Cancer ; 21(1): 204, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307808

RESUMEN

Brain cancer is regarded among the deadliest forms of cancer worldwide. The distinct tumor microenvironment and inherent characteristics of brain tumor cells virtually render them resistant to the majority of conventional and advanced therapies. Oxidative stress (OS) is a key disruptor of normal brain homeostasis and is involved in carcinogenesis of different forms of brain cancers. Thus, antioxidants may inhibit tumorigenesis by preventing OS induced by various oncogenic factors. Antioxidants are hypothesized to inhibit cancer initiation by endorsing DNA repair and suppressing cancer progression by creating an energy crisis for preneoplastic cells, resulting in antiproliferative effects. These effects are referred to as chemopreventive effects mediated by an antioxidant mechanism. In addition, antioxidants minimize chemotherapy-induced nonspecific organ toxicity and prolong survival. Antioxidants also support the prooxidant chemistry that demonstrate chemotherapeutic potential, particularly at high or pharmacological doses and trigger OS by promoting free radical production, which is essential for activating cell death pathways. A growing body of evidence also revealed the roles of exogenous antioxidants as adjuvants and their ability to reverse chemoresistance. In this review, we explain the influences of different exogenous and endogenous antioxidants on brain cancers with reference to their chemopreventive and chemotherapeutic roles. The role of antioxidants on metabolic reprogramming and their influence on downstream signaling events induced by tumor suppressor gene mutations are critically discussed. Finally, the review hypothesized that both pro- and antioxidant roles are involved in the anticancer mechanisms of the antioxidant molecules by killing neoplastic cells and inhibiting tumor recurrence followed by conventional cancer treatments. The requirements of pro- and antioxidant effects of exogenous antioxidants in brain tumor treatment under different conditions are critically discussed along with the reasons behind the conflicting outcomes in different reports. Finally, we also mention the influencing factors that regulate the pharmacology of the exogenous antioxidants in brain cancer treatment. In conclusion, to achieve consistent clinical outcomes with antioxidant treatments in brain cancers, rigorous mechanistic studies are required with respect to the types, forms, and stages of brain tumors. The concomitant treatment regimens also need adequate consideration.


Asunto(s)
Antioxidantes , Neoplasias Encefálicas , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Carcinogénesis , Microambiente Tumoral
12.
Mol Cancer ; 21(1): 31, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35081970

RESUMEN

Head and neck cancer is the sixth most common cancer across the globe. This is generally associated with tobacco and alcohol consumption. Cancer in the pharynx majorly arises through human papillomavirus (HPV) infection, thus classifying head and neck squamous cell carcinoma (HNSCC) into HPV-positive and HPV-negative HNSCCs. Aberrant, mesenchymal-epithelial transition factor (c-MET) signal transduction favors HNSCC progression by stimulating proliferation, motility, invasiveness, morphogenesis, and angiogenesis. c-MET upregulation can be found in the majority of head and neck squamous cell carcinomas. c-MET pathway acts on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K), alpha serine/threonine-protein kinase (Akt), mitogen-activated protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. c-MET also establishes a crosstalk pathway with epidermal growth factor receptor (EGFR) and contributes towards chemoresistance in HNSCC. In recent years, the signaling communications of c-MET/HGF in metabolic dysregulation, tumor-microenvironment and immune modulation in HNSCC have emerged. Several clinical trials have been established against c-MET/ hepatocyte growth factor (HGF) signaling network to bring up targeted and effective therapeutic strategies against HNSCC. In this review, we discuss the molecular mechanism(s) and current understanding of c-MET/HGF signaling and its effect on HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello/etiología , Neoplasias de Cabeza y Cuello/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Resistencia a Antineoplásicos/genética , Metabolismo Energético , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Humanos , Inmunidad , Resultado del Tratamiento , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
13.
Curr Issues Mol Biol ; 44(10): 4584-4615, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36286029

RESUMEN

Alzheimer's disease (AD) is a deadly brain degenerative disorder that leads to brain shrinkage and dementia. AD is manifested with hyperphosphorylated tau protein levels and amyloid beta (Aß) peptide buildup in the hippocampus and cortex regions of the brain. The nervous tissue of AD patients also contains fungal proteins and DNA which are linked to bacterial infections, suggesting that polymicrobial infections also occur in the brains of those with AD. Both immunohistochemistry and next-generation sequencing (NGS) techniques were employed to assess fungal and bacterial infections in the brain tissue of AD patients and non-AD controls, with the most prevalent fungus genera detected in AD patients being Alternaria, Botrytis, Candida, and Malassezia. Interestingly, Fusarium was the most common genus detected in the control group. Both AD patients and controls were also detectable for Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroides for bacterial infection. At the family level, Burkholderiaceae and Staphylococcaceae exhibited higher levels in the brains of those with AD than the brains of the control group. Accordingly, there is thought to be a viscous cycle of uncontrolled neuroinflammation and neurodegeneration in the brain, caused by agents such as the herpes simplex virus type 1 (HSV1), Chlamydophilapneumonia, and Spirochetes, and the presence of apolipoprotein E4 (APOE4), which is associated with an increased proinflammatory response in the immune system. Systemic proinflammatory cytokines are produced by microorganisms such as Cytomegalovirus, Helicobacter pylori, and those related to periodontal infections. These can then cross the blood-brain barrier (BBB) and lead to the onset of dementia. Here, we reviewed the relationship between the etiology of AD and microorganisms (such as bacterial pathogens, Herpesviridae viruses, and periodontal pathogens) according to the evidence available to understand the pathogenesis of AD. These findings might guide a targeted anti-inflammatory therapeutic approach to AD.

14.
AJR Am J Roentgenol ; 218(5): 831-832, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34910536

RESUMEN

Although professional societies now support MRI in patients with nonconditional (legacy) cardiac implanted electronic devices (CIEDs), concern remains regarding potential cumulative effects of serial examinations. We evaluated 481 patients with CIEDs who underwent 599 1.5-T MRI examinations (44.6% cardiac examinations), including 68 patients who underwent multiple examinations (maximum, seven examinations). No major events occurred. The minor adverse event rate was 5.7%. Multiple statistical evaluations showed no increase in adverse event rate with increasing number of previous examinations.


Asunto(s)
Desfibriladores Implantables , Marcapaso Artificial , Electrónica , Humanos , Imagen por Resonancia Magnética/efectos adversos , Examen Físico
15.
Appl Microbiol Biotechnol ; 106(13-16): 4867-4883, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35819514

RESUMEN

Rauvolfia serpentina (L). Benth. ex Kurz. (Apocynaceae), commonly known as Sarpagandha or Indian snakeroot, has long been used in the traditional treatment of snakebites, hypertension, and mental illness. The plant is known to produce an array of indole alkaloids such as reserpine, ajmaline, amalicine, etc. which show immense pharmacological and biomedical significance. However, owing to its poor seed viability, lesser germination rate and overexploitation for several decades for its commercially important bioactive constituents, the plant has become endangered in its natural habitat. The present review comprehensively encompasses the various biotechnological tools employed in this endangered Ayurvedic plant for its in vitro propagation, role of plant growth regulators and additives in direct and indirect regeneration, somatic embryogenesis and synthetic seed production, secondary metabolite production in vitro, and assessment of clonal fidelity using molecular markers and genetic transformation. In addition, elicitation and other methods of optimization of its indole-alkaloids are also described herewith. KEY POINTS: • Latest literature on in vitro propagation of Rauvolfia serpentina • Biotechnological production and optimization of indole alkaloids • Clonal fidelity and transgenic studies in R. serpentina.


Asunto(s)
Rauwolfia , Alcaloides de Triptamina Secologanina , Biotecnología , Alcaloides Indólicos/metabolismo , Raíces de Plantas/metabolismo , Rauwolfia/genética , Alcaloides de Triptamina Secologanina/metabolismo
16.
Appl Microbiol Biotechnol ; 106(5-6): 1837-1854, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35218388

RESUMEN

Bacopa monnieri (L.) Wettst. or water hyssop commonly known as "Brahmi" is a small, creeping, succulent herb from the Plantaginaceae family. It is popularly employed in Ayurvedic medicine as a nerve tonic to improve memory and cognition. Of late, this plant has been reported extensively for its pharmacologically active phyto-constituents. The main phytochemicals are brahmine, alkaloids, herpestine, and saponins. The saponins include bacoside A, bacoside B, and betulic acid. Investigation into the pharmacological effect of this plant has thrived lately, encouraging its neuroprotective and memory supporting capacity among others. Besides, it possesses many other therapeutic activities like antimicrobial, antioxidant, anti-inflammatory, gastroprotective properties, etc. Because of its multipurpose therapeutic potential, it is overexploited owing to the prioritization of natural remedies over conventional ones, which compels us to conserve them. B. monnieri is confronting the danger of extinction from its natural habitat as it is a major cultivated medico-botanical and seed propagation is restricted due to less seed availability and viability. The ever-increasing demand for the plant can be dealt with mass propagation through plant tissue culture strategy. Micropropagation utilizing axillary meristems as well as de novo organogenesis have been widely investigated in this plant which has also been explored for its conservation and production of different types of secondary metabolites. Diverse in vitro methods such as organogenesis, cell suspension, and callus cultures have been accounted for with the aim of production and/or enhancement of bacosides. Direct shoot-organogenesis was initiated in excised leaf and internodal explants without any exogenous plant growth regulator(s) (PGRs), and the induction rate was improved when exogenous cytokinins and other supplements were used. Moreover, biotechnological toolkits like Agrobacterium-mediated transformation and the use of mutagens have been reported. Besides, the molecular marker-based studies demonstrated the clonal fidelity among the natural and in vitro generated plantlets also elucidating the inherent diversity among the natural populations. Agrobacterium-mediated transformation system was mostly employed to optimize bacoside biosynthesis and heterologous expression of other genes. The present review aims at depicting the recent research outcomes of in vitro studies performed on B. monnieri which include root and shoot organogenesis, callus induction, somatic embryogenesis, production of secondary metabolites by in vitro propagation, acclimatization of the in vitro raised plantlets, genetic transformation, and molecular marker-based studies of clonal fidelity. KEY POINTS: • Critical and up to date records on in vitro propagation of Bacopa monnieri • In vitro propagation and elicitation of secondary metabolites from B. monnieri • Molecular markers and transgenic studies in B. monnieri.


Asunto(s)
Bacopa , Saponinas , Triterpenos , Agrobacterium/genética , Bacopa/química , Bacopa/metabolismo , Biotecnología , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Saponinas/metabolismo , Triterpenos/metabolismo
17.
Appl Microbiol Biotechnol ; 106(17): 5399-5414, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35941253

RESUMEN

Gloriosa superba L., commonly known as "gloriosa lily," "glory lily," and "tiger claw," is a perennial climber in the Liliaceae family. This plant is used in African and Southeast Asian cultures as an ayurvedic medicinal herb to treat various health conditions. Its main bioactive component is colchicine, which is responsible for medicinal efficacies as well as poisonous properties of the plant. A high market demand, imprudent harvesting of G. superba from natural habitat, and low seed setting have led scientists to explore micropropagation techniques and in vitro optimization of its phytochemicals. Plant growth regulators have been used to induce callus, root, and shoot organogenesis, and somatic embryogenesis in vitro. This review is aimed at presenting information regarding the occurrence, taxonomic description, phytochemistry, micropropagation, in vitro secondary metabolite, and synthetic seed production. The data collected from the existing literature, along with an analysis of individual study details, outcomes, and variations in the reports, will contribute to the development of biotechnological strategies for conservation and mass propagation of G. superba. KEY POINTS: • Latest literature on micropropagation of Gloriosa superba. • Biotechnological production and optimization of colchicine. • Regeneration, somatic embryogenesis, and synthetic seed production.


Asunto(s)
Colchicaceae , Plantas Medicinales , Colchicina , Semillas
18.
Adv Exp Med Biol ; 1358: 257-273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35641874

RESUMEN

Nowadays, about 14% of couples have difficulty in conceiving, and half of the cases are attributed to men. Asthenozoospermia or poor sperm motility is considered as the cause of infertility in males which is most common. Even though energy metabolism is considered the main reason for the etiology of asthenospermia, few attempts are made to determine the pathway of its metabolic potential. Recognition of cellular as well as molecular pathways that lead to reduced sperm motility may lead to the implementation of new therapeutic strategies to eliminate low sperm motility in people with asthenozoospermia. This review article discusses the key causes of decreased sperm motility and some of the muted genes and metabolic causes of the same.


Asunto(s)
Astenozoospermia , Infertilidad Masculina , Astenozoospermia/genética , Astenozoospermia/metabolismo , Metabolismo Energético , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Motilidad Espermática/genética , Espermatozoides/metabolismo
19.
J Integr Neurosci ; 21(1): 41, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164477

RESUMEN

Computational approach to study of neuronal impairment is rapidly evolving, as experiments and intuition alone could not explain the complexity of brain system. The increase in an overwhelming amount of new data from both theory and computational modeling necessitate the development of databases and tools for analysis, visualization, and interpretation of neuroscience data. To ensure the sustainability of this development, consistent update and training of young professionals are imperative. For this purpose, relevant articles, chapters, and modules are essential to keep abreast of developments. Therefore, this article seeks to outline the biological databases and analytical tools along with their applications. It's envisaged that knowledge along this line would be a "training recipe" for young talents and guide for professionals and researchers in neuroscience.


Asunto(s)
Biología Computacional , Bases de Datos Factuales , Enfermedades del Sistema Nervioso , Humanos
20.
AJR Am J Roentgenol ; 216(5): 1222-1228, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760655

RESUMEN

OBJECTIVE. At its advent, CT was too slow to image the heart. Temporal resolution improved with electron beam CT (EBCT); subsequently, the heart could be imaged, eventually leading to the discovery of prognostic information obtained from the coronary calcium score. In the early 2000s, EBCT was replaced by MDCT. In this review, we discuss the rise and fall of EBCT and explore its legacy in cardiac imaging. CONCLUSION. Although MDCT rendered EBCT obsolete, EBCT leaves a legacy in cardiac imaging regarding both diagnosis and prognosis. The creators of MDCT emulated the strengths of EBCT and learned from its weaknesses. Moreover, EBCT showed that imaging surrogates can predict outcomes, and the origins of substrate-guided treatment can be traced to EBCT.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Electrones , Corazón/diagnóstico por imagen , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA