RESUMEN
OBJECTIVE: Squalene epoxidase (SQLE) promotes metabolic dysfunction-associated steatohepatitis-associated hepatocellular carcinoma (MASH-HCC), but its role in modulating the tumour immune microenvironment in MASH-HCC remains unclear. DESIGN: We established hepatocyte-specific Sqle transgenic (tg) and knockout mice, which were subjected to a choline-deficient high-fat diet plus diethylnitrosamine to induce MASH-HCC. SQLE function was also determined in orthotopic and humanised mice. Immune landscape alterations of MASH-HCC mediated by SQLE were profiled by single-cell RNA sequencing and flow cytometry. RESULTS: Hepatocyte-specific Sqle tg mice exhibited a marked increase in MASH-HCC burden compared with wild-type littermates, together with decreased tumour-infiltrating functional IFN-γ+ and Granzyme B+ CD8+ T cells while enriching Arg-1+ myeloid-derived suppressor cells (MDSCs). Conversely, hepatocyte-specific Sqle knockout suppressed tumour growth with increased cytotoxic CD8+ T cells and reduced Arg-1+ MDSCs, inferring that SQLE promotes immunosuppression in MASH-HCC. Mechanistically, SQLE-driven cholesterol accumulation in tumour microenvironment underlies its effect on CD8+ T cells and MDSCs. SQLE and its metabolite, cholesterol, impaired CD8+ T cell activity by inducing mitochondrial dysfunction. Cholesterol depletion in vitro abolished the effect of SQLE-overexpressing MASH-HCC cell supernatant on CD8+ T cell suppression and MDSC activation, whereas cholesterol supplementation had contrasting functions on CD8+ T cells and MDSCs treated with SQLE-knockout supernatant. Targeting SQLE with genetic ablation or pharmacological inhibitor, terbinafine, rescued the efficacy of anti-PD-1 treatment in MASH-HCC models. CONCLUSION: SQLE induces an impaired antitumour response in MASH-HCC via attenuating CD8+ T cell function and augmenting immunosuppressive MDSCs. SQLE is a promising target in boosting anti-PD-1 immunotherapy for MASH-HCC.
RESUMEN
OBJECTIVE: Roseburia intestinalis is a probiotic species that can suppress intestinal inflammation by producing metabolites. We aimed to study the role of R. intestinalis in colorectal tumourigenesis and immunotherapy. DESIGN: R. intestinalis abundance was evaluated in stools of patients with colorectal cancer (CRC) (n=444) and healthy controls (n=575). The effects of R. intestinalis were studied in ApcMin/+ or azoxymethane (AOM)-induced CRC mouse models, and in syngeneic mouse xenograft models of CT26 (microsatellite instability (MSI)-low) or MC38 (MSI-high). The change of immune landscape was evaluated by multicolour flow cytometry and immunohistochemistry staining. Metabolites were profiled by metabolomic profiling. RESULTS: R. intestinalis was significantly depleted in stools of patients with CRC compared with healthy controls. R. intestinalis administration significantly inhibited tumour formation in ApcMin/+ mice, which was confirmed in mice with AOM-induced CRC. R. intestinalis restored gut barrier function as indicated by improved intestinal permeability and enhanced expression of tight junction proteins. Butyrate was identified as the functional metabolite generated by R. intestinalis. R. intestinalis or butyrate suppressed tumour growth by inducing cytotoxic granzyme B+, interferon (IFN)-γ+ and tumour necrosis factor (TNF)-α+ CD8+ T cells in orthotopic mouse models of MC38 or CT26. R. intestinalis or butyrate also significantly improved antiprogrammed cell death protein 1 (anti-PD-1) efficacy in mice bearing MSI-low CT26 tumours. Mechanistically, butyrate directly bound to toll-like receptor 5 (TLR5) receptor on CD8+ T cells to induce its activity through activating nuclear factor kappa B (NF-κB) signalling. CONCLUSION: R. intestinalis protects against colorectal tumourigenesis by producing butyrate, which could also improve anti-PD-1 efficacy by inducing functional CD8+ T cells. R. intestinalis is a potential adjuvant to augment anti-PD-1 efficacy against CRC.
Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Humanos , Ratones , Animales , Butiratos/farmacología , Carcinogénesis , Transformación Celular Neoplásica , Neoplasias Colorrectales/metabolismoRESUMEN
OBJECTIVE: Gut microbiota is a key player in dictating immunotherapy response. We aimed to explore the immunomodulatory effect of probiotic Lactobacillus gallinarum and its role in improving anti-programmed cell death protein 1 (PD1) efficacy against colorectal cancer (CRC). DESIGN: The effects of L. gallinarum in anti-PD1 response were assessed in syngeneic mouse models and azoxymethane/dextran sulfate sodium-induced CRC model. The change of immune landscape was identified by multicolour flow cytometry and validated by immunohistochemistry staining and in vitro functional assays. Liquid chromatography-mass spectrometry was performed to identify the functional metabolites. RESULTS: L. gallinarum significantly improved anti-PD1 efficacy in two syngeneic mouse models with different microsatellite instability (MSI) statuses (MSI-high for MC38, MSI-low for CT26). Such effect was confirmed in CRC tumourigenesis model. L. gallinarum synergised with anti-PD1 therapy by reducing Foxp3+ CD25+ regulatory T cell (Treg) intratumoural infiltration, and enhancing effector function of CD8+ T cells. L. gallinarum-derived indole-3-carboxylic acid (ICA) was identified as the functional metabolite. Mechanistically, ICA inhibited indoleamine 2,3-dioxygenase (IDO1) expression, therefore suppressing kynurenine (Kyn) production in tumours. ICA also competed with Kyn for binding site on aryl hydrocarbon receptor (AHR) and antagonised Kyn binding on CD4+ T cells, thereby inhibiting Treg differentiation in vitro. ICA phenocopied L. gallinarum effect and significantly improved anti-PD1 efficacy in vivo, which could be reversed by Kyn supplementation. CONCLUSION: L. gallinarum-derived ICA improved anti-PD1 efficacy in CRC through suppressing CD4+Treg differentiation and enhancing CD8+T cell function by modulating the IDO1/Kyn/AHR axis. L. gallinarum is a potential adjuvant to augment anti-PD1 efficacy against CRC.
Asunto(s)
Neoplasias Colorrectales , Inhibidores de Puntos de Control Inmunológico , Quinurenina , Lactobacillus , Animales , Ratones , Linfocitos T CD8-positivos , Neoplasias Colorrectales/tratamiento farmacológico , Quinurenina/metabolismo , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Linfocitos T Reguladores , Lactobacillus/química , Receptor de Muerte Celular Programada 1/efectos de los fármacos , Receptor de Muerte Celular Programada 1/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Lisados Bacterianos/farmacología , Lisados Bacterianos/uso terapéuticoRESUMEN
BACKGROUND & AIMS: Recent studies have highlighted the role of the gut microbiota and their metabolites in non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). We aimed to identify specific beneficial bacterial species that could be used prophylactically to prevent NAFLD-HCC. METHODS: The role of Bifidobacterium pseudolongum was assessed in two mouse models of NAFLD-HCC: diethylnitrosamine + a high-fat/high-cholesterol diet or + a choline-deficient/high-fat diet. Germ-free mice were used for the metabolic study of B. pseudolongum. Stool, portal vein and liver tissues were collected from mice for non-targeted and targeted metabolomic profiles. Two human NAFLD-HCC cell lines (HKCI2 and HKCI10) were co-cultured with B. pseudolongum-conditioned media (B.p CM) or candidate metabolites. RESULTS: B. pseudolongum was the top depleted bacterium in mice with NAFLD-HCC. Oral gavage of B. pseudolongum significantly suppressed NAFLD-HCC formation in two mouse models (p < 0.01). Incubation of NAFLD-HCC cells with B.p CM significantly suppressed cell proliferation, inhibited the G1/S phase transition and induced apoptosis. Acetate was identified as the critical metabolite generated from B. pseudolongum in B.p CM, an observation that was confirmed in germ-free mice. Acetate inhibited cell proliferation and induced cell apoptosis in NAFLD-HCC cell lines and suppressed NAFLD-HCC tumor formation in vivo. B. pseudolongum restored heathy gut microbiome composition and improved gut barrier function. Mechanistically, B. pseudolongum-generated acetate reached the liver via the portal vein and bound to GPR43 (G coupled-protein receptor 43) on hepatocytes. GPR43 activation suppressed the IL-6/JAK1/STAT3 signaling pathway, thereby preventing NAFLD-HCC progression. CONCLUSIONS: B. pseudolongum protected against NAFLD-HCC by secreting the anti-tumor metabolite acetate, which reached the liver via the portal vein. B. pseudolongum holds potential as a probiotic for the prevention of NAFLD-HCC. IMPACT AND IMPLICATIONS: Non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC) is an increasing healthcare burden worldwide. There is an urgent need to develop effective agents to prevent NAFLD-HCC progression. Herein, we show that the probiotic Bifidobacterium pseudolongum significantly suppressed NAFLD-HCC progression by secreting acetate, which bound to hepatic GPR43 (G coupled-protein receptor 43) via the gut-liver axis and suppressed the oncogenic IL-6/JAK1/STAT3 signaling pathway. Bifidobacterium pseudolongum holds potential as a novel probiotic for NAFLD-HCC prevention.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/prevención & control , Carcinoma Hepatocelular/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Interleucina-6/metabolismo , Hígado/patología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/prevención & control , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Acetatos , MicrobiotaRESUMEN
Recent discoveries of noncanonical RNA caps, such as nicotinamide adenine dinucleotide (NAD+) and 3'-dephospho-coenzyme A (dpCoA), have expanded our knowledge of RNA caps. Although dpCoA has been known to cap RNAs in various species, the identities of its capped RNAs (dpCoA-RNAs) remained unknown. To fill this gap, we developed a method called dpCoA tagSeq, which utilized a thiol-reactive maleimide group to label dpCoA cap with a tag RNA serving as the 5' barcode. The barcoded RNAs were isolated using a complementary DNA strand of the tag RNA prior to direct sequencing by nanopore technology. Our validation experiments with model RNAs showed that dpCoA-RNA was efficiently tagged and captured using this protocol. To confirm that the tagged RNAs are capped by dpCoA and no other thiol-containing molecules, we used a pyrophosphatase NudC to degrade the dpCoA cap to adenosine monophosphate (AMP) moiety before performing the tagSeq protocol. We identified 44 genes that transcribe dpCoA-RNAs in mouse liver, demonstrating the method's effectiveness in identifying and characterizing the capped RNAs. This strategy provides a viable approach to identifying dpCoA-RNAs that allows for further functional investigations of the cap.
Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Animales , Ratones , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Coenzima A , MaleimidasRESUMEN
BACKGROUNDS & AIMS: Squalene epoxidase (SQLE) is the rate-limiting enzyme for cholesterol biosynthesis. We elucidated the functional significance, molecular mechanisms, and clinical impact of SQLE in nonalcoholic steatohepatitis (NASH). METHODS: We performed studies with hepatocyte-specific Sqle overexpression transgenic (Sqle tg) mice and mice given high-fat high-cholesterol (HFHC) or methionine- and choline-deficient (MCD) diet to induce NASH. SQLE downstream target carbonic anhydrase III (CA3) was identified using co-immunoprecipitation and Western Blot. Some mice were given SQLE inhibitor (terbinafine) and CA3 inhibitor (acetazolamide) to study the therapeutic effects in NASH. Human samples (N = 217) including 65 steatoses, 80 NASH, and 72 healthy controls were analyzed for SQLE levels in liver tissue and in serum. RESULTS: SQLE is highly up-regulated in human NASH and mouse models of NASH. Sqle tg mice triggered spontaneous insulin resistance, hepatic steatosis, liver injury, and accelerated HFHC or MCD diet-induced NASH development. Mechanistically, SQLE tg mice caused hepatic cholesterol accumulation, thereby triggering proinflammatory nuclear factor-κB signaling and steatohepatitis. SQLE directly bound to CA3, which induced sterol regulatory element-binding protein 1C activation, acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase1 expression and de novo hepatic lipogenesis. Combined targeting SQLE (terbinafine) and CA3 (acetazolamide) synergistically ameliorated NASH in mice with superior efficacy to either drug alone. Serum SQLE with CA3 could distinguish patients with NASH from steatosis and healthy controls (area under the receiver operating characteristic curve, 0.815; 95% confidence interval, 0.758-0.871). CONCLUSIONS: SQLE drives the initiation and progression of NASH through inducing cholesterol biosynthesis, and SQLE/CA3 axis-mediated lipogenesis. Combined targeting of SQLE and CA3 confers therapeutic benefit in NASH. Serum SQLE and CA3 are novel biomarkers for the noninvasive diagnosis of patients with NASH.
Asunto(s)
Anhidrasa Carbónica III/metabolismo , Colesterol/biosíntesis , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Escualeno-Monooxigenasa/metabolismo , Animales , Biomarcadores/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Humanos , Resistencia a la Insulina , Lipogénesis , Hígado/metabolismo , Ratones , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/etiología , Regulación hacia ArribaRESUMEN
BACKGROUND & AIMS: Mutant KRAS promotes glutaminolysis, a process that uses steps from the tricarboxylic cycle to convert glutamine to α-ketoglutarate and other molecules via glutaminase and SLC25A22. This results in inhibition of demethylases and epigenetic alterations in cells that increase proliferation and stem cell features. We investigated whether mutant KRAS-mediated glutaminolysis affects the epigenomes and activities of colorectal cancer (CRC) cells. METHODS: We created ApcminKrasG12D mice with intestine-specific knockout of SLC25A22 (ApcminKrasG12DSLC25A22fl/fl mice). Intestine tissues were collected and analyzed by histology, immunohistochemistry, and DNA methylation assays; organoids were derived and studied for stem cell features, along with organoids derived from 2 human colorectal tumor specimens. Colon epithelial cells (1CT) and CRC cells (DLD1, DKS8, HKE3, and HCT116) that expressed mutant KRAS, with or without knockdown of SLC25A22 or other proteins, were deprived of glutamine or glucose and assayed for proliferation, colony formation, glucose or glutamine consumption, and apoptosis; gene expression patterns were analyzed by RNA sequencing, proteins by immunoblots, and metabolites by liquid chromatography-mass spectrometry, with [U-13C5]-glutamine as a tracer. Cells and organoids with knocked down, knocked out, or overexpressed proteins were analyzed for DNA methylation at CpG sites using arrays. We performed immunohistochemical analyses of colorectal tumor samples from 130 patients in Hong Kong (57 with KRAS mutations) and Kaplan-Meier analyses of survival. We analyzed gene expression levels of colorectal tumor samples in The Cancer Genome Atlas. RESULTS: CRC cells that express activated KRAS required glutamine for survival, and rapidly incorporated it into the tricarboxylic cycle (glutaminolysis); this process required SLC25A22. Cells incubated with succinate and non-essential amino acids could proliferate under glutamine-free conditions. Mutant KRAS cells maintained a low ratio of α-ketoglutarate to succinate, resulting in reduced 5-hydroxymethylcytosine-a marker of DNA demethylation, and hypermethylation at CpG sites. Many of the hypermethylated genes were in the WNT signaling pathway and at the protocadherin gene cluster on chromosome 5q31. CRC cells without mutant KRAS, or with mutant KRAS and knockout of SLC25A22, expressed protocadherin genes (PCDHAC2, PCDHB7, PCDHB15, PCDHGA1, and PCDHGA6)-DNA was not methylated at these loci. Expression of the protocadherin genes reduced WNT signaling to ß-catenin and expression of the stem cell marker LGR5. ApcminKrasG12DSLC25A22fl/fl mice developed fewer colon tumors than ApcminKrasG12D mice (P < .01). Organoids from ApcminKrasG12DSLC25A22fl/fl mice had reduced expression of LGR5 and other markers of stemness compared with organoids derived from ApcminKrasG12D mice. Knockdown of SLC25A22 in human colorectal tumor organoids reduced clonogenicity. Knockdown of lysine demethylases, or succinate supplementation, restored expression of LGR5 to SLC25A22-knockout CRC cells. Knockout of SLC25A22 in CRC cells that express mutant KRAS increased their sensitivity to 5-fluorouacil. Level of SLC25A22 correlated with levels of LGR5, nuclear ß-catenin, and a stem cell-associated gene expression pattern in human colorectal tumors with mutations in KRAS and reduced survival times of patients. CONCLUSIONS: In CRC cells that express activated KRAS, SLC25A22 promotes accumulation of succinate, resulting in increased DNA methylation, activation of WNT signaling to ß-catenin, increased expression of LGR5, proliferation, stem cell features, and resistance to 5-fluorouacil. Strategies to disrupt this pathway might be developed for treatment of CRC.
Asunto(s)
Colon/patología , Neoplasias Colorrectales/genética , Mucosa Intestinal/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Desmetilación del ADN , Resistencia a Antineoplásicos , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glutamina/metabolismo , Hong Kong/epidemiología , Humanos , Estimación de Kaplan-Meier , Ácidos Cetoglutáricos/metabolismo , Masculino , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/genética , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Vía de Señalización Wnt/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
MOTIVATION: Liquid chromatography-mass spectrometry-based non-targeted metabolomics is routinely performed to qualitatively and quantitatively analyze a tremendous amount of metabolite signals in complex biological samples. However, false-positive peaks in the datasets are commonly detected as metabolite signals by using many popular software, resulting in non-reliable measurement. RESULTS: To reduce false-positive calling, we developed an interactive web tool, termed CPVA, for visualization and accurate annotation of the detected peaks in non-targeted metabolomics data. We used a chromatogram-centric strategy to unfold the characteristics of chromatographic peaks through visualization of peak morphology metrics, with additional functions to annotate adducts, isotopes and contaminants. CPVA is a free, user-friendly tool to help users to identify peak background noises and contaminants, resulting in decrease of false-positive or redundant peak calling, thereby improving the data quality of non-targeted metabolomics studies. AVAILABILITY AND IMPLEMENTATION: The CPVA is freely available at http://cpva.eastus.cloudapp.azure.com. Source code and installation instructions are available on GitHub: https://github.com/13479776/cpva. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Metabolómica , Programas Informáticos , Cromatografía Liquida , Internet , Espectrometría de MasasRESUMEN
Traditional survey methods (TSMs) are difficult to use to perform a census of aquatic plant diversity completely in river ecosystems, and improved aquatic plant community monitoring programs are becoming increasingly crucial with a continuous decline in diversity. Although environmental DNA (eDNA) metabarcoding has been applied successfully to assess aquatic biodiversity, limited work has been reported regarding aquatic plant diversity in rivers. In this study, the efficiency of eDNA to estimate the aquatic plant diversity and spatial distribution of rivers from the Jingjinji (JJJ) region was evaluated by comparing results obtained by the TSM. Based on a combination of the two methods, 157 aquatic plant species, including 24 hydrophytes, 61 amphibious plants, and 72 mesophytes, were identified. The spatial patterns in species richness and abundance by eDNA exhibited agreement with the TSM results with a gradual decline from the mountain area (MA) to the agricultural area (AA) and then to the urban area (UA). Compared to the TSM, eDNA identified a significantly greater number of species per site (p < 0.01) and obtained a significantly higher abundance in hydrophytes (p < 0.01), supplementing the unavailable abundance data from the TSM. Furthermore, the aquatic plant assemblages from the different areas were discriminated well using eDNA (p < 0.05), but they were better discriminated by the TSM (p < 0.01). Thus, our study provides more detailed data on aquatic plant diversity in rivers from the JJJ region, which is essential for biodiversity conservation. Our findings also highlight that eDNA can be reliable for evaluating aquatic plant diversity and has the potential to respond to landscape heterogeneity in river ecosystems.
Asunto(s)
ADN Ambiental , Biodiversidad , China , Código de Barras del ADN Taxonómico , Ecosistema , Monitoreo del Ambiente , Ríos , Encuestas y CuestionariosRESUMEN
Epidemiological and animal studies have revealed a possible linkage between 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) exposure and neurodegenerative disease such as Parkinson's disease (PD). However, whether or how BDE-47 would affect the PD progression remains unclear. Here, we carried out a metabolomics study based on liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) to investigate the possible contribution of BDE-47 exposure to PD progression in Drosophila (fly) model. Transgenic PD flies were exposed to BDE-47 through diet for 30 days. Global metabolomic analysis identified 48 altered metabolites after the exposure. These metabolites were mainly involved in tryptophan metabolism, phenylalanine metabolism, purine metabolism, and alanine, aspartate and glutamate metabolism. Further, by quantifying metabolites of interest using LC-MS/MS, we confirmed that the formation of neuro-protector kynurenic acid was slowed down while the formation of neurotoxin 3-hydroxy-kynurenine was speeded up on the 20th exposure day. Moreover, the levels of SAM/SAH (an index of methylation potential) and GSH/GSSG (an indicator of oxidative stress) were found to decrease on the 30th exposure day. Our results suggest that BDE-47 could induce imbalance of kynurenine metabolism and methylation potential, and oxidative stress, which might further accelerate PD progression.
Asunto(s)
Exposición Dietética , Drosophila/efectos de los fármacos , Éteres Difenilos Halogenados/toxicidad , Animales , Modelos Animales de Enfermedad , Drosophila/metabolismo , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Metabolómica , Metilación/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacosRESUMEN
Identification of the direct molecular targets of environmental pollutants is of great importance for toxicity mechanism studies. Despite numerous studies have been conducted to investigate the toxicity mechanism of perfluorinated compounds (PFCs), their direct-binding protein targets which trigger downstream toxicity effects remain largely unknown. Herein, we present a systematic chemical proteomic study to profile the target proteins of PFCs by taking PFOA as a representative. Considering its electrophilicity, PFOA could preferentially bind to reactive cysteine-containing proteins. Therefore, two complementary cysteine-targeting probes, iodoacetamide alkyne (IAA) and ethynyl benziodoxolone azide (EBX), were selected to enrich the putative target proteins in the absence or presence of PFOA. Quantitative proteomic analysis of the enriched proteins identified Acaca and Acacb as novel target proteins of PFOA. We then applied parallel reaction monitoring (PRM)-based targeted proteomics study combined with thermal shift assay-based chemical proteomics to verify Acaca and Acacb as bona fide binding targets. These findings afford a plausible explanation for the PFOA-induced liver toxicity, especially regarding abnormal fatty acid metabolism that was validated by targeted metabolomics analysis. The present study documents an integrative chemical proteomics-metabolomics platform that facilitates the authentic identification of proteins that are targeted by small molecules and its potential to be applied for toxicity mechanism studies of environmental pollutants.
Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Fluorocarburos/metabolismo , Hígado/metabolismo , Metabolómica/métodos , Proteómica/métodos , Animales , Femenino , Ratones Endogámicos C57BL , Unión ProteicaRESUMEN
A practical chiral CE method, using sulfated-ß-CD as chiral selector, was developed for the enantioseparation of glycopyrrolate containing two chiral centers. Several parameters affecting the separation were studied, including the nature and concentration of the chiral selectors, BGE pH, buffer type and concentration, separation voltage, and temperature. The separation was carried out in an uncoated fused-silica capillary of (effective length 40 cm) × 50 µm id with a separation voltage of 20 kV using 30 mM sodium phosphate buffer (pH 7.0, adjusted with 1 M sodium hydroxide) containing 2.0% w/v sulfated-ß-CD at 25°C. Finally, the method for determining the enantiomeric impurities of RS-glycopyrrolate was proposed. The method was further validated with respect to its specificity, linearity range, accuracy and precision, LODs, and quantification in the expected range of occurrence for the isomeric impurities (0.1%).
Asunto(s)
Electroforesis Capilar/métodos , Glicopirrolato/análisis , Glicopirrolato/química , beta-Ciclodextrinas/química , Contaminación de Medicamentos , Concentración de Iones de Hidrógeno , EstereoisomerismoRESUMEN
A new capillary electrophoresis (CE) method using carboxymethyl-ß-cyclodextrin (CM-ß-CD) as chiral selector has been developed for the enantiomeric separation of meptazinol and its three intermediate enantiomers (intermediates II-IV), and validated for the application of quantitative determination of meptazinol in tablets. The primary factors affecting the separation efficiency, which include the chiral selector and its concentration, the buffer pH and composition, the organic modifiers used, and the applied voltage, were optimized. Baseline and satisfactory separations were obtained for meptazinol and its three intermediate enantiomers. For quantitative analysis of meptazinol, the method was performed at the condition using 2.0 mmol/L CM-ß-CD in 20 mmol/L H3 PO4 buffer adjusted to a pH of 6.00 with an applied voltage of 15 kV and containing 5% acetonitrile. After validation of the method in terms of its linearity, limits of detection and quantitation, accuracy, precision and selectivity, the method was successfully applied to the quantitation of meptazinol in pharmaceutical formulations.
Asunto(s)
Electroforesis Capilar/métodos , Meptazinol/química , Adsorción , Química Farmacéutica , Concentración de Iones de Hidrógeno , Meptazinol/aislamiento & purificación , Estereoisomerismo , beta-Ciclodextrinas/químicaRESUMEN
BACKGROUND: Gut probiotic depletion is associated with non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). Here, we investigated the prophylactic potential of Lactobacillus acidophilus against NAFLD-HCC. METHODS: NAFLD-HCC conventional and germ-free mice were established by diethylnitrosamine (DEN) injection with feeding of high-fat high-cholesterol (HFHC) or choline-deficient high-fat (CDHF) diet. Orthotopic NAFLD-HCC allografts were established by intrahepatic injection of murine HCC cells with HFHC feeding. Metabolomic profiling was performed using liquid chromatography-mass spectrometry. Biological functions of L. acidophilus conditional medium (L.a CM) and metabolites were determined in NAFLD-HCC human cells and mouse organoids. FINDINGS: L. acidophilus supplementation suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice. This was confirmed in orthotopic allografts and germ-free tumourigenesis mice. L.a CM inhibited the growth of NAFLD-HCC human cells and mouse organoids. The protective function of L. acidophilus was attributed to its non-protein small molecules. By metabolomic profiling, valeric acid was the top enriched metabolite in L.a CM and its upregulation was verified in liver and portal vein of L. acidophilus-treated mice. The protective function of valeric acid was demonstrated in NAFLD-HCC human cells and mouse organoids. Valeric acid significantly suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice, accompanied by improved intestinal barrier integrity. This was confirmed in another NAFLD-HCC mouse model induced by CDHF diet and DEN. Mechanistically, valeric acid bound to hepatocytic surface receptor GPR41/43 to inhibit Rho-GTPase pathway, thereby ablating NAFLD-HCC. INTERPRETATION: L. acidophilus exhibits anti-tumourigenic effect in mice by secreting valeric acid. Probiotic supplementation is a potential prophylactic of NAFLD-HCC. FUNDING: Shown in Acknowledgments.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ácidos Pentanoicos , Probióticos , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/etiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Lactobacillus acidophilus , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/etiología , Hígado/metabolismo , Transformación Celular Neoplásica/metabolismo , Carcinogénesis/patología , Dieta Alta en Grasa , Colina/metabolismo , Probióticos/farmacología , Probióticos/uso terapéutico , Ratones Endogámicos C57BLRESUMEN
The N6-methyladenosine (m6A) RNA-binding protein YTHDF1 is frequently overexpressed in colorectal cancer and drives chemotherapeutic resistance. To systematically identify druggable targets in colorectal cancer with high expression of YTHDF1, this study used a CRISPR/Cas9 screening strategy that revealed RUVBL1 and RUVBL2 as putative targets. RUVBL1/2 were overexpressed in primary colorectal cancer samples and represented independent predictors of poor patient prognosis. Functionally, loss of RUVBL1/2 preferentially impaired the growth of YTHDF1-high colorectal cancer cells, patient-derived primary colorectal cancer organoids, and subcutaneous xenografts. Mechanistically, YTHFD1 and RUVBL1/2 formed a positive feedforward circuit to accelerate oncogenic translation. YTHDF1 bound to m6A-modified RUVBL1/2 mRNA to promote translation initiation and protein expression. Coimmunoprecipitation and mass spectrometry identified that RUVBL1/2 reciprocally interacted with YTHDF1 at 40S translation initiation complexes. Consequently, RUVBL1/2 depletion stalled YTHDF1-driven oncogenic translation and nascent protein biosynthesis, leading to proliferative arrest and apoptosis. Ribosome sequencing revealed that RUVBL1/2 loss impaired the activation of MAPK, RAS, and PI3K-AKT signaling induced by YTHDF1. Finally, the blockade of RUVBL1/2 by the pharmacological inhibitor CB6644 or vesicle-like nanoparticle-encapsulated siRNAs preferentially arrested the growth of YTHDF1-expressing colorectal cancer in vitro and in vivo. Our findings show that RUVBL1/2 are potential prognostic markers and druggable targets that regulate protein translation in YTHDF1-high colorectal cancer. Significance: RUVBL1/2 inhibition is a therapeutic strategy to abrogate YTHDF1-driven oncogenic translation and overcome m6A dysregulation in colorectal cancer.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Adenosina , Neoplasias Colorrectales , ADN Helicasas , Proteínas de Unión al ARN , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Animales , Ratones , ADN Helicasas/genética , ADN Helicasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , Adenosina/análogos & derivados , Adenosina/metabolismo , Carcinogénesis/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Biosíntesis de Proteínas , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , PronósticoRESUMEN
The emerging toxicant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) is of wide concern due to its ubiquitous occurrence and high toxicity. Despite regular human exposure, limited evidence exists about its presence in the body and potential health risks. Herein, we analyzed cerebrospinal fluid (CSF) samples from Parkinson's disease (PD) patients and controls. The CSF levels of 6PPD-Q were twice as high in PD patients compared to controls. Immunostaining assays performed with primary dopaminergic neurons confirm that 6PPD-Q at environmentally relevant concentrations can exacerbate the formation of Lewy neurites induced by α-synuclein preformed fibrils (α-syn PFF). Assessment of cellular respiration reveals a considerable decrease in neuronal spare respiratory and ATP-linked respiration, potentially due to changes in mitochondrial membrane potential. Moreover, 6PPD-Q-induced mitochondrial impairment correlates with an upsurge in mitochondrial reactive oxygen species (mROS), and Mito-TEMPO-driven scavenging of mROS can lessen the amount of pathologic phospho-serine 129 α-synuclein. Untargeted metabolomics provides supporting evidence for the connection between 6PPD-Q exposure and changes in neuronal metabolite profiles. In-depth targeted metabolomics further unveils an overall reduction in glycolysis metabolite pool and fluctuations in the quantity of TCA cycle intermediates. Given its potentially harmful attributes, the presence of 6PPD-Q in human brain could potentially be a risk factor for PD.
Asunto(s)
Enfermedades Mitocondriales , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Enfermedades Mitocondriales/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Quinonas/metabolismoRESUMEN
Peptostreptococcus stomatis (P. stomatis) is enriched in colorectal cancer (CRC), but its causality and translational implications in CRC are unknown. Here, we show that P. stomatis accelerates colonic tumorigenesis in ApcMin/+ and azoxymethane/dextran sodium sulfate (AOM-DSS) models by inducing cell proliferation, suppressing apoptosis, and impairing gut barrier function. P. stomatis adheres to CRC cells through its surface protein fructose-1,6-bisphosphate aldolase (FBA) that binds to the integrin α6/ß4 receptor on CRC cells, leading to the activation of ERBB2 and the downstream MEK-ERK-p90 cascade. Blockade of the FBA-integrin α6/ß4 abolishes ERBB2-mitogen-activated protein kinase (MAPK) activation and the protumorigenic effect of P. stomatis. P. stomatis-driven ERBB2 activation bypasses receptor tyrosine kinase (RTK) blockade by EGFR inhibitors (cetuximab, erlotinib), leading to drug resistance in xenograft and spontaneous CRC models of KRAS-wild-type CRC. P. stomatis also abrogates BRAF inhibitor (vemurafenib) efficacy in BRAFV600E-mutant CRC xenografts. Thus, we identify P. stomatis as an oncogenic bacterium and a contributory factor for non-responsiveness to RTK inhibitors in CRC.
Asunto(s)
Carcinogénesis , Neoplasias Colorrectales , Resistencia a Antineoplásicos , Peptostreptococcus , Receptor ErbB-2 , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , /farmacologíaRESUMEN
Seasonal water-level fluctuations can profoundly impact nutrient dynamics in aquatic ecosystems, influencing trophic structures and overall ecosystem functions. The Tian-e-Zhou Oxbow of the Yangtze River is China's first ex situ reserve and the world's first successful case of ex situ conservation for cetaceans. In order to better protect the Yangtze finless porpoise, the effects of water-level fluctuations on the trophic structure in this oxbow cannot be ignored. Therefore, we employed stable isotope analysis to investigate the changes in the trophic position, trophic niche, and contribution of basal food sources to fish during the wet and dry seasons of 2021-2022. The research results indicate that based on stable isotope analysis of the trophic levels of different dietary fish species, fish trophic levels during the wet season were generally higher than those during the dry season, but the difference was not significant (p > 0.05). Fish communities in the Tian-e-Zhou Oxbow exhibited broader trophic niche space and lower trophic redundancy during the wet season (p < 0.05), indicating a more complex and stable food web structure. In both the wet and dry seasons, fish in the oxbow primarily relied on endogenous carbon sources, but there were significant differences in the way they were utilized between the two seasons (p < 0.05). In light of the changes in the trophic structure of the fish during the wet and dry seasons, and to ensure the stable development of the Yangtze finless porpoise population, we recommend strengthening the connectivity between the Tian-e-Zhou Oxbow and the Yangtze River.
RESUMEN
KRAS is an important tumor intrinsic factor driving immune suppression in colorectal cancer (CRC). In this study, we demonstrate that SLC25A22 underlies mutant KRAS-induced immune suppression in CRC. In immunocompetent male mice and humanized male mice models, SLC25A22 knockout inhibits KRAS-mutant CRC tumor growth with reduced myeloid derived suppressor cells (MDSC) but increased CD8+ T-cells, implying the reversion of mutant KRAS-driven immunosuppression. Mechanistically, we find that SLC25A22 plays a central role in promoting asparagine, which binds and activates SRC phosphorylation. Asparagine-mediated SRC promotes ERK/ETS2 signaling, which drives CXCL1 transcription. Secreted CXCL1 functions as a chemoattractant for MDSC via CXCR2, leading to an immunosuppressive microenvironment. Targeting SLC25A22 or asparagine impairs KRAS-induced MDSC infiltration in CRC. Finally, we demonstrate that the targeting of SLC25A22 in combination with anti-PD1 therapy synergizes to inhibit MDSC and activate CD8+ T cells to suppress KRAS-mutant CRC growth in vivo. We thus identify a metabolic pathway that drives immunosuppression in KRAS-mutant CRC.