Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.760
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38697107

RESUMEN

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Asunto(s)
Inmunoterapia , Lípidos , ARN , Microambiente Tumoral , Animales , Perros , Femenino , Humanos , Ratones , Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glioblastoma/terapia , Glioblastoma/inmunología , Glioma/terapia , Glioma/inmunología , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias/inmunología , ARN/química , ARN/uso terapéutico , ARN Mensajero/metabolismo , ARN Mensajero/genética , Lípidos/química
2.
Cell ; 149(3): 525-37, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22521361

RESUMEN

Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Aberraciones Cromosómicas , Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Niño , Trastornos Generalizados del Desarrollo Infantil/diagnóstico , Rotura Cromosómica , Deleción Cromosómica , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Sistema Nervioso/crecimiento & desarrollo , Esquizofrenia/genética , Análisis de Secuencia de ADN , Transducción de Señal
3.
Nature ; 583(7814): E14, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32533095

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nature ; 582(7812): 395-398, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494010

RESUMEN

Neuroprotectant strategies that have worked in rodent models of stroke have failed to provide protection in clinical trials. Here we show that the opposite circadian cycles in nocturnal rodents versus diurnal humans1,2 may contribute to this failure in translation. We tested three independent neuroprotective approaches-normobaric hyperoxia, the free radical scavenger α-phenyl-butyl-tert-nitrone (αPBN), and the N-methyl-D-aspartic acid (NMDA) antagonist MK801-in mouse and rat models of focal cerebral ischaemia. All three treatments reduced infarction in day-time (inactive phase) rodent models of stroke, but not in night-time (active phase) rodent models of stroke, which match the phase (active, day-time) during which most strokes occur in clinical trials. Laser-speckle imaging showed that the penumbra of cerebral ischaemia was narrower in the active-phase mouse model than in the inactive-phase model. The smaller penumbra was associated with a lower density of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive dying cells and reduced infarct growth from 12 to 72 h. When we induced circadian-like cycles in primary mouse neurons, deprivation of oxygen and glucose triggered a smaller release of glutamate and reactive oxygen species, as well as lower activation of apoptotic and necroptotic mediators, in 'active-phase' than in 'inactive-phase' rodent neurons. αPBN and MK801 reduced neuronal death only in 'inactive-phase' neurons. These findings suggest that the influence of circadian rhythm on neuroprotection must be considered for translational studies in stroke and central nervous system diseases.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Neuronas/patología , Neuroprotección , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/prevención & control , Animales , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/prevención & control , Glucosa/deficiencia , Humanos , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Oxígeno , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Accidente Cerebrovascular/fisiopatología , Investigación Biomédica Traslacional , Insuficiencia del Tratamiento
5.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38267085

RESUMEN

Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.


Asunto(s)
Arabidopsis , Rhodophyta , Algas Marinas , Algas Marinas/genética , Criptocromos/metabolismo , Rhodophyta/genética , Ritmo Circadiano/genética , Arabidopsis/genética
6.
Blood ; 142(10): 887-902, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37267517

RESUMEN

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy with an overall poor prognosis, particularly for patients that progress on targeted therapies. Novel, more durable treatment options are needed for patients with MCL. Protein arginine methyltransferase 5 (PRMT5) is overexpressed in MCL and plays an important oncogenic role in this disease via epigenetic and posttranslational modification of cell cycle regulators, DNA repair genes, components of prosurvival pathways, and RNA splicing regulators. The mechanism of targeting PRMT5 in MCL remains incompletely characterized. Here, we report on the antitumor activity of PRMT5 inhibition in MCL using integrated transcriptomics of in vitro and in vivo models of MCL. Treatment with a selective small-molecule inhibitor of PRMT5, PRT-382, led to growth arrest and cell death and provided a therapeutic benefit in xenografts derived from patients with MCL. Transcriptional reprograming upon PRMT5 inhibition led to restored regulatory activity of the cell cycle (p-RB/E2F), apoptotic cell death (p53-dependent/p53-independent), and activation of negative regulators of B-cell receptor-PI3K/AKT signaling (PHLDA3, PTPROt, and PIK3IP1). We propose pharmacologic inhibition of PRMT5 for patients with relapsed/refractory MCL and identify MTAP/CDKN2A deletion and wild-type TP53 as biomarkers that predict a favorable response. Selective targeting of PRMT5 has significant activity in preclinical models of MCL and warrants further investigation in clinical trials.


Asunto(s)
Linfoma de Células del Manto , Fosfatidilinositol 3-Quinasas , Adulto , Humanos , Línea Celular Tumoral , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
7.
Nature ; 572(7771): 620-623, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31384042

RESUMEN

Non-line-of-sight imaging allows objects to be observed when partially or fully occluded from direct view, by analysing indirect diffuse reflections off a secondary relay surface. Despite many potential applications1-9, existing methods lack practical usability because of limitations including the assumption of single scattering only, ideal diffuse reflectance and lack of occlusions within the hidden scene. By contrast, line-of-sight imaging systems do not impose any assumptions about the imaged scene, despite relying on the mathematically simple processes of linear diffractive wave propagation. Here we show that the problem of non-line-of-sight imaging can also be formulated as one of diffractive wave propagation, by introducing a virtual wave field that we term the phasor field. Non-line-of-sight scenes can be imaged from raw time-of-flight data by applying the mathematical operators that model wave propagation in a conventional line-of-sight imaging system. Our method yields a new class of imaging algorithms that mimic the capabilities of line-of-sight cameras. To demonstrate our technique, we derive three imaging algorithms, modelled after three different line-of-sight systems. These algorithms rely on solving a wave diffraction integral, namely the Rayleigh-Sommerfeld diffraction integral. Fast solutions to Rayleigh-Sommerfeld diffraction and its approximations are readily available, benefiting our method. We demonstrate non-line-of-sight imaging of complex scenes with strong multiple scattering and ambient light, arbitrary materials, large depth range and occlusions. Our method handles these challenging cases without explicitly inverting a light-transport model. We believe that our approach will help to unlock the potential of non-line-of-sight imaging and promote the development of relevant applications not restricted to laboratory conditions.

8.
Proc Natl Acad Sci U S A ; 119(15): e2110846119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35385353

RESUMEN

Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.


Asunto(s)
Fiebre Hemorrágica Ebola , Tomografía de Emisión de Positrones , Receptores de GABA , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Fiebre Hemorrágica Ebola/diagnóstico por imagen , Fiebre Hemorrágica Ebola/patología , Pulmón/patología , Macaca mulatta , Tomografía de Emisión de Positrones/métodos , Pirazoles/metabolismo , Pirimidinas/metabolismo , Receptores de GABA/metabolismo , Bazo/patología
9.
Nano Lett ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619226

RESUMEN

Halide perovskite-based resistive switching memory (memristor) has potential in an artificial synapse. However, an abrupt switch behavior observed for a formamidinium lead triiodide (FAPbI3)-based memristor is undesirable for an artificial synapse. Here, we report on the δ-FAPbI3/atomic-layer-deposited (ALD)-SnO2 bilayer memristor for gradual analogue resistive switching. In comparison to a single-layer δ-FAPbI3 memristor, the heterojunction δ-FAPbI3/ALD-SnO2 bilayer effectively reduces the current level in the high-resistance state. The analog resistive switching characteristics of δ-FAPbI3/ALD-SnO2 demonstrate exceptional linearity and potentiation/depression performance, resembling an artificial synapse for neuromorphic computing. The nonlinearity of long-term potentiation and long-term depression is notably decreased from 12.26 to 0.60 and from -8.79 to -3.47, respectively. Moreover, the δ-FAPbI3/ALD-SnO2 bilayer achieves a recognition rate of ≤94.04% based on the modified National Institute of Standards and Technology database (MNIST), establishing its potential in an efficient artificial synapse.

10.
J Cell Physiol ; 239(6): e31245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38497504

RESUMEN

Parathyroid hormone (PTH) serves dual roles in bone metabolism, exhibiting both anabolic and catabolic effects. The anabolic properties of PTH have been utilized in the treatment of osteoporosis with proven efficacy in preventing fractures. Despite these benefits, PTH can be administered therapeutically for up to 2 years, and its use in patients with underlying malignancies remains a subject of ongoing debate. These considerations underscore the need for a more comprehensive understanding of the underlying mechanisms. p21-activated kinase 4 (PAK4) is involved in bone resorption and cancer-associated osteolysis; however, its role in osteoblast function and PTH action remains unknown. Therefore, in this study, we aimed to clarify the role of PAK4 in osteoblast function and its effects on PTH-induced anabolic activity. PAK4 enhanced MC3T3-E1 osteoblast viability and proliferation and upregulated cyclin D1 expression. PAK4 also augmented osteoblast differentiation, as indicated by increased mineralization found by alkaline phosphatase and Alizarin Red staining. Treatment with PTH (1-34), an active PTH fragment, stimulated PAK4 expression and phosphorylation in a protein kinase A-dependent manner. In addition, bone morphogenetic protein-2 (which is known to promote bone formation) increased phosphorylated PAK4 (p-PAK4) and PAK4 levels. PAK4 regulated the expression of both phosphorylated and total ß-catenin, which are critical for osteoblast proliferation and differentiation. Moreover, p-PAK4 directly interacted with ß-catenin, and disruption of ß-catenin's binding to T-cell factor impaired PAK4- and PTH-induced osteoblast differentiation. Our findings elucidate the effect of PAK4 on enhancing bone formation in osteoblasts and its pivotal role in the anabolic activity of PTH mediated through its interaction with ß-catenin. These insights improve the understanding of the mechanisms underlying PTH activity and should inform the development of more effective and safer osteoporosis treatments.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Osteoblastos , Hormona Paratiroidea , beta Catenina , Quinasas p21 Activadas , Animales , Humanos , Ratones , beta Catenina/metabolismo , beta Catenina/genética , Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina D1/metabolismo , Ciclina D1/genética , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Cultivadas
11.
Stroke ; 55(7): 1904-1913, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38913800

RESUMEN

BACKGROUND: The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved mitochondrial response that is critical for maintaining mitochondrial and energetic homeostasis under cellular stress after tissue injury and disease. Here, we ask whether UPRmt may be a potential therapeutic target for ischemic stroke. METHODS: We performed the middle cerebral artery occlusion and oxygen-glucose deprivation models to mimic ischemic stroke in vivo and in vitro, respectively. Oligomycin and meclizine were used to trigger the UPRmt. We used 2,3,5-triphenyltetrazolium chloride staining, behavioral tests, and Nissl staining to evaluate cerebral injury in vivo. The Cell Counting Kit-8 assay and the Calcein AM Assay Kit were conducted to test cerebral injury in vitro. RESULTS: Inducing UPRmt with oligomycin protected neuronal cultures against oxygen-glucose deprivation. UPRmt could also be triggered with meclizine, and this Food and Drug Administration-approved drug also protected neurons against oxygen-glucose deprivation. Blocking UPRmt with siRNA against activating transcription factor 5 eliminated the neuroprotective effects of meclizine. In a mouse model of focal cerebral ischemia, pretreatment with meclizine was able to induce UPRmt in vivo, which reduced infarction and improved neurological outcomes. CONCLUSIONS: These findings suggest that the UPRmt is important in maintaining the survival of neurons facing ischemic/hypoxic stress. The UPRmt mechanism may provide a new therapeutic avenue for ischemic stroke.


Asunto(s)
Isquemia Encefálica , Glucosa , Mitocondrias , Neuronas , Respuesta de Proteína Desplegada , Animales , Masculino , Ratones , Isquemia Encefálica/metabolismo , Células Cultivadas , Glucosa/deficiencia , Infarto de la Arteria Cerebral Media/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oxígeno/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
12.
J Am Chem Soc ; 146(20): 13846-13853, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38652033

RESUMEN

Lipid rafts, which are dynamic nanodomains in the plasma membrane, play a crucial role in intermembrane processes by clustering together and growing in size within the plane of the membrane while also aligning with each other across different membranes. However, the physical origin of layer by layer alignment of lipid rafts remains to be elucidated. Here, by using fluorescence imaging and synchrotron X-ray reflectivity in a phase-separated multilayer system, we find that the alignment of raft-mimicking Lo domains is regulated by the distance between bilayers. Molecular dynamics simulations reveal that the aligned state is energetically preferred when the intermembrane distance is small due to its ability to minimize the volume of surface water, which has fewer water hydrogen bonds (HBs) compared to bulk water. Our results suggest that water HB-driven alignment of lipid rafts plays a role as a precursor of intermembrane processes such as cell-cell fusion, virus entry, and signaling.


Asunto(s)
Enlace de Hidrógeno , Microdominios de Membrana , Simulación de Dinámica Molecular , Agua , Agua/química , Microdominios de Membrana/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
13.
Curr Issues Mol Biol ; 46(2): 1308-1317, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38392201

RESUMEN

We performed a large-scale flow cytometric analysis to determine whether M1 macrophage (M1Ø) and M2 macrophage (M2Ø) polarization in white adipose tissue (WAT) was altered immediately after exercise. Additionally, we comprehensively investigated the effects of obesity, exercise intensity, and recovery time on macrophage polarization in WAT. A single exercise bout of various intensities (ND, non-exercise control; -LIE, low-intensity exercise; -MIE, mid-intensity exercise; -HIE, high-intensity exercise) was performed by normal mice (ND) and obese mice (HFD). To confirm differences in M1Ø/M2Ø polarization in WAT based on the recovery time after a single exercise bout, WAT was acquired at 2 h, 24 h, and 48 h after exercise (total n = 168, 7 mice × 4 groups × 2 diets × 3 recovery time). The harvested WAT was immediately analyzed by flow cytometry, and macrophages were fluorescently labeled using F4/80, as well as M1Ø with CD11c and M2Øs with CD206. After a single bout of exercise, the M2Ø/M1Ø polarization ratio of WAT increases in both normal and obese mice, but differences vary depending on recovery time and intensity. Regardless of obesity, our findings showed that there could be a transient increase in M1Ø in WAT over a short recovery time (24 h) post-exercise (in ND-MIE, ND-HIE, and HFD-HIE). Furthermore, it was observed that the greater the exercise intensity in obese mice, the more effective the induction of M2Ø polarization immediately after exercise, as well as the maintenance of high M2Ø polarization, even after a prolonged recovery time.

14.
Br J Cancer ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840031

RESUMEN

BACKGROUND: We examined the patterns of breast reconstruction postmastectomy in breast cancer patients undergoing postmastectomy radiotherapy (PMRT) and compared complications based on radiotherapy fractionation and reconstruction procedures. METHODS: Using National Health Insurance Service (NHIS) data (2015-2020), we analysed 4669 breast cancer patients with PMRT and reconstruction. Using propensity matching, cohorts for hypofractionated fractionation (HF) and conventional fractionation (CF) were created, adjusting for relevant factors and identifying grade ≥3 complications. RESULT: Of 4,669 patients, 30.6% underwent HF and 69.4% CF. The use of HF has increased from 19.4% in 2015 to 41.0% in 2020. Immediate autologous (32.9%) and delayed two-stage implant reconstruction (33.9%) were common. Complication rates for immediate (N = 1286) and delayed two-stage (N = 784) reconstruction were similar between HF and CF groups (5.1% vs. 5.4%, P = 0.803, and 10.5% vs. 10.7%, P = 0.856, respectively) with median follow-ups of 2.5 and 2.6 years. HF showed no increased risk of complications across reconstruction methods. CONCLUSION: A nationwide cohort study revealed no significant difference in complication rates between the HF and CF groups, indicating HF for reconstructed breasts is comparable to CF. However, consultation regarding the fractionation for reconstructed breast cancer patients may still be necessary.

15.
Small ; 20(23): e2308771, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38152967

RESUMEN

The study presents the binder-free synthesis of mixed metallic organic frameworks (MMOFs) supported on a ternary metal oxide (TMO) core as an innovative three-dimensional (3D) approach to enhance electron transport and mass transfer during the electrochemical charge-discharge process, resulting in high-performance hybrid supercapacitors. The research demonstrates that the choice of organic linkers can be used to tailor the morphology of these MMOFs, thus optimizing their electrochemical efficiency. Specifically, a NiCo-MOF@NiCoO2@Ni electrode, based on terephthalic linkers, exhibits highly ordered porosity and a vast internal surface area, achieving a maximum specific capacity of 2320 mC cm-2, while maintaining excellent rate capability and cycle stability. With these performances, the hybrid supercapacitor (HSC) achieves a maximum specific capacitance of 424.6 mF cm-2 (specific capacity 653.8 mC cm-2) and 30.7 F cm-3 with energy density values of 10.1 mWh cm-3 at 167.4 mW cm-3 (139.8 µWh cm-2 at 2310 µW cm-2), which are higher than those of previously reported MMOFs based electrodes. This research introduces a novel approach for metal organic framework based HSC electrodes, diverging from the traditional emphasis on metal ions, in order to achieve the desired electrochemical performance.

16.
Cancer Causes Control ; 35(3): 393-403, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37794203

RESUMEN

PURPOSE: Elevated costs of cancer treatment can result in economic and psychological "financial toxicity" distress. This pilot study assessed the feasibility of a point-of-care intervention to connect adult patients with cancer-induced financial toxicity to telehealth-delivered financial counseling. METHODS: We conducted a three-armed parallel randomized pilot study, allocating newly referred patients with cancer and financial toxicity to individual, group accredited telehealth financial counseling, or usual care with educational material (1:1:1). We assessed the feasibility of recruitment, randomization, retention, baseline and post-intervention COmprehensive Score for Financial Toxicity (COST), and Telehealth Usability Questionnaire (TUQ) scores. RESULTS: Of 382 patients screened, 121 were eligible and enrolled. 58 (48%) completed the intervention (9 individual, 9 group counseling, 40 educational booklet). 29 completed follow-up surveys: 45% female, 17% African American, 79% white, 7% Hispanic, 55% 45-64 years old, 31% over 64, 34% lived in rural areas, 24% had cancer stage I, 21% II, 7% III, 31% IV. Baseline characteristics were balanced across arms, retention status, surveys completion. Mean (SD) COST was 12.4 (6.1) at baseline and 16.0 (8.4) post-intervention. Mean (SD) COST score differences were 6.3 (11.6) after individual counseling, 5.8 (8.5) after group counseling, and 2.5 (6.4) after usual care. Mean TUQ score among nine counseling participants was 5.5 (0.9) over 7.0. Non-parametric comparisons were not statistically meaningful. CONCLUSION: Recruitment and randomization were feasible, while study retention presented challenges. Nine participants reported good usability and satisfaction with telehealth counseling. Larger-scale trials focused on improving participation, retention, and impact of financial counseling among patients with cancer are justified.


Asunto(s)
Neoplasias , Telemedicina , Adulto , Humanos , Femenino , Persona de Mediana Edad , Masculino , Proyectos Piloto , Sistemas de Atención de Punto , Estrés Financiero , Consejo , Neoplasias/terapia
17.
J Med Virol ; 96(3): e29506, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38445718

RESUMEN

With the global pandemic and the continuous mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for effective and broadly neutralizing treatments has become increasingly urgent. This study introduces a novel strategy that targets two aspects simultaneously, using bifunctional antibodies to inhibit both the attachment of SARS-CoV-2 to host cell membranes and viral fusion. We developed pioneering IgG4-(HR2)4 bifunctional antibodies by creating immunoglobulin G4-based and phage display-derived human monoclonal antibodies (mAbs) that specifically bind to the SARS-CoV-2 receptor-binding domain, engineered with four heptad repeat 2 (HR2) peptides. Our in vitro experiments demonstrate the superior neutralization efficacy of these engineered antibodies against various SARS-CoV-2 variants, ranging from original SARS-CoV-2 strain to the recently emerged Omicron variants, as well as SARS-CoV, outperforming the parental mAb. Notably, intravenous monotherapy with the bifunctional antibody neutralizes a SARS-CoV-2 variant in a murine model without causing significant toxicity. In summary, this study unveils the significant potential of HR2 peptide-driven bifunctional antibodies as a potent and versatile strategy for mitigating SARS-CoV-2 infections. This approach offers a promising avenue for rapid development and management in the face of the continuously evolving SARS-CoV-2 variants, holding substantial promise for pandemic control.


Asunto(s)
Anticuerpos Biespecíficos , COVID-19 , Humanos , Animales , Ratones , SARS-CoV-2/genética , Anticuerpos Monoclonales/uso terapéutico , Inmunoglobulina G , Péptidos/genética , Poder Psicológico
18.
Ophthalmology ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703795

RESUMEN

PURPOSE: Defining how the in vivo immune status of peripheral tissues is shaped by the external environment has remained a technical challenge. We recently developed Functional in vivo confocal microscopy (Fun-IVCM) for dynamic, longitudinal imaging of corneal immune cells in living humans. This study investigated the effect of seasonal-driven environmental factors on the morphodynamic features of human corneal immune cell subsets. DESIGN: Longitudinal, observational clinical study. PARTICIPANTS: Sixteen healthy participants (aged 18-40 years) attended 2 visits in distinct seasons in Melbourne, Australia (Visit 1, November-December 2021 [spring-summer]; Visit 2, April-June 2022 [autumn-winter]). METHODS: Environmental data were collected over each period. Participants underwent ocular surface examinations and corneal Fun-IVCM (Heidelberg Engineering). Corneal scans were acquired at 5.5 ± 1.5-minute intervals for up to 5 time points. Time-lapse Fun-IVCM videos were created to analyze corneal immune cells, comprising epithelial T cells and dendritic cells (DCs), and stromal macrophages. Tear cytokines were analyzed using a multiplex bead-based immunoassay. MAIN OUTCOME MEASURES: Difference in the density, morphology, and dynamic parameters of corneal immune cell subsets over the study periods. RESULTS: Visit 1 was characterized by higher temperature, lower humidity, and higher air particulate and pollen levels compared with Visit 2. Clinical ocular surface parameters and the density of immune cell subsets were similar across visits. At Visit 1 , corneal epithelial DCs were larger, with a lower dendrite probing speed (0.38 ± 0.21 vs. 0.68 ± 0.33 µm/min; P < 0.001) relative to Visit 2; stromal macrophages were more circular and had less dynamic activity (Visit 1, 7.2 ± 1.9 vs. Visit 2, 10.3 ± 3.7 dancing index; P < 0.001). Corneal T cell morphodynamics were unchanged across periods. Basal tear levels of interleukin 2 and CXCL10 were relatively lower during spring-summer. CONCLUSIONS: This study identifies that the in vivo morphodynamics of innate corneal immune cells (DCs, macrophages) are modified by environmental factors, but such effects are not evident for adaptive immune cells (T cells). The cornea is a potential in vivo window to investigate season-dependent environmental influences on the human immune system. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

19.
Acc Chem Res ; 56(4): 440-451, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36689689

RESUMEN

ConspectusUntil recently, most studies on nucleation and growth mechanisms have employed electrochemical transient measurements, and numerous models have been established on various metal electrode elements. Contrary to the conventional tip-induced nucleation and growth model, a base-induced nucleation and growth mode was discovered not so long ago, which highlighted the importance of direct real-time observations such as visualization. As analysis techniques developed, diverse in situ/operando imaging methods have spurred the fundamental understanding of complex and dynamic battery electrochemistry. Experimental observations of alkali Li and Na metals are limited and difficult because their high reactivity makes not only the fabrication but also the analysis itself challenging. Na metal has high reactivity to electrolytes. Accordingly, it is difficult to visualize the Na deposition in real-time due to gas evolution and resolution limitation. Only a few studies have examined the Na deposition and dissolution reactions in operando. It is generally believed that the Mg anode is free from the dendrite growth of Mg metal, and Mg deposition preferentially occurs along the surface direction. However, whether the Mg anode always follows the dendrite-free growth has currently become a controversial topic and is being discussed and redefined based on real-time imaging analyses. In addition, a variety of morphological evolutions in the metal anodes are required to be systematically distinguished by key parameters. Real-time imaging analysis can directly confirm the solid-liquid-solid multiphase conversion reactions of S and Se cathodes. S and Se elements belong to the same chalcogen group, but their crystal structures and morphological changes significantly differ in each electrode during deposition and dissolution reactions. Therefore, it is necessitated to discuss the nucleation and growth behaviors by examining intrinsic properties of each element in chalcogen cathodes. Considering that a mechanistic understanding of the Se cathode is in its infancy, its nucleation and growth behaviors must be further explored through fundamental studies. In this Account, we aim to discuss the nucleation and growth behaviors of metal (Li, Na, and Mg) anodes and chalcogen (S and Se) cathodes. To elucidate their nucleation and growth mechanisms, we overview the morphological evolutions on the electrode surface and interface by in situ/operando visualizations. Our recent studies covering Li, Na, Mg, S, and Se electrodes verified by operando X-ray imaging are used as critical resources in understanding their nucleation and growth behaviors. Overall, with validation of the complex and dynamic nucleation and growth behaviors of metal and chalcogen electrodes by in situ/operando visualization methods, we hope that this Account can contribute to supporting the fundamental knowledge for the development of high-energy-density metal and chalcogen electrodes.

20.
J Exp Bot ; 75(6): 1767-1780, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37769208

RESUMEN

Very long-chain fatty acids (VLCFAs) are precursors for the synthesis of membrane lipids, cuticular waxes, suberins, and storage oils in plants. 3-Ketoacyl CoA synthase (KCS) catalyzes the condensation of C2 units from malonyl-CoA to acyl-CoA, the first rate-limiting step in VLCFA synthesis. In this study, we revealed that Arabidopsis KCS17 catalyzes the elongation of C22-C24 VLCFAs required for synthesizing seed coat suberin. Histochemical analysis of Arabidopsis plants expressing GUS (ß-glucuronidase) under the control of the KCS17 promoter revealed predominant GUS expression in seed coats, petals, stigma, and developing pollen. The expression of KCS17:eYFP (enhanced yellow fluorescent protein) driven by the KCS17 promoter was observed in the outer integument1 of Arabidopsis seed coats. The KCS17:eYFP signal was detected in the endoplasmic reticulum of tobacco epidermal cells. The levels of C22 VLCFAs and their derivatives, primary alcohols, α,ω-alkane diols, ω-hydroxy fatty acids, and α,ω-dicarboxylic acids increased by ~2-fold, but those of C24 VLCFAs, ω-hydroxy fatty acids, and α,ω-dicarboxylic acids were reduced by half in kcs17-1 and kcs17-2 seed coats relative to the wild type (WT). The seed coat of kcs17 displayed decreased autofluorescence under UV and increased permeability to tetrazolium salt compared with the WT. Seed germination and seedling establishment of kcs17 were more delayed by salt and osmotic stress treatments than the WT. KCS17 formed homo- and hetero-interactions with KCR1, PAS2, and ECR, but not with PAS1. Therefore, KCS17-mediated VLCFA synthesis is required for suberin layer formation in Arabidopsis seed coats.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lípidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación , Ácidos Grasos/metabolismo , Lípidos de la Membrana/metabolismo , Semillas/genética , Semillas/metabolismo , Plantas/metabolismo , Ácidos Dicarboxílicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA