Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 631(8019): 73-79, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38867044

RESUMEN

Light-emitting diodes (LEDs) based on metal halide perovskites (PeLEDs) with high colour quality and facile solution processing are promising candidates for full-colour and high-definition displays1-4. Despite the great success achieved in green PeLEDs with lead bromide perovskites5, it is still challenging to realize pure-red (620-650 nm) LEDs using iodine-based counterparts, as they are constrained by the low intrinsic bandgap6. Here we report efficient and colour-stable PeLEDs across the entire pure-red region, with a peak external quantum efficiency reaching 28.7% at 638 nm, enabled by incorporating a double-end anchored ligand molecule into pure-iodine perovskites. We demonstrate that a key function of the organic intercalating cation is to stabilize the lead iodine octahedron through coordination with exposed lead ions and enhanced hydrogen bonding with iodine. The molecule synergistically facilitates spectral modulation, promotes charge transfer between perovskite quantum wells and reduces iodine migration under electrical bias. We realize continuously tunable emission wavelengths for iodine-based perovskite films with suppressed energy loss due to the decrease in bond energy of lead iodine in ionic perovskites as the bandgap increases. Importantly, the resultant devices show outstanding spectral stability and a half-lifetime of more than 7,600 min at an initial luminance of 100 cd m-2.


Asunto(s)
Compuestos de Calcio , Plomo , Óxidos , Titanio , Titanio/química , Compuestos de Calcio/química , Óxidos/química , Plomo/química , Color , Yodo/química , Luz , Ligandos
2.
Nature ; 615(7954): 830-835, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922588

RESUMEN

Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1-15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm-2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm-2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm-2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm-2, along with a high radiance of more than 3,200 W s-1 m-2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s-1 m-2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.

4.
Angew Chem Int Ed Engl ; 61(34): e202205617, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35748492

RESUMEN

We report here fast A-site cation cross-exchange between APbX3 perovskite nanocrystals (NCs) made of different A-cations (Cs (cesium), FA (formamidinium), and MA (methylammonium)) at room temperature. Surprisingly, the A-cation cross-exchange proceeds as fast as the halide (X=Cl, Br, or I) exchange with the help of free A-oleate complexes present in the freshly prepared colloidal perovskite NC solutions. This enabled the preparation of double (MACs, MAFA, CsFA)- and triple (MACsFA)-cation perovskite NCs with an optical band gap that is finely tunable by their A-site composition. The optical spectroscopy together with structural analysis using XRD and atomically resolved high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and integrated differential phase contrast (iDPC) STEM indicates the homogeneous distribution of different cations in the mixed perovskite NC lattice. Unlike halide ions, the A-cations do not phase-segregate under light illumination.

5.
Nat Commun ; 15(1): 2245, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472279

RESUMEN

Bifacial perovskite solar cells have shown great promise for increasing power output by capturing light from both sides. However, the suboptimal optical transmittance of back metal electrodes together with the complex fabrication process associated with front transparent conducting oxides have hindered the development of efficient bifacial PSCs. Here, we present a novel approach for bifacial perovskite devices using single-walled carbon nanotubes as both front and back electrodes. single-walled carbon nanotubes offer high transparency, conductivity, and stability, enabling bifacial PSCs with a bifaciality factor of over 98% and a power generation density of over 36%. We also fabricate flexible, all-carbon-electrode-based devices with a high power-per-weight value of 73.75 W g-1 and excellent mechanical durability. Furthermore, we show that our bifacial devices have a much lower material cost than conventional monofacial PSCs. Our work demonstrates the potential of SWCNT electrodes for efficient, stable, and low-cost bifacial perovskite photovoltaics.

6.
Sci Adv ; 9(22): eadg8659, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267357

RESUMEN

Organic thin-film transistors (OTFTs) with ideal behavior are highly desired, because nonideal devices may overestimate the intrinsic property and yield inferior performance in applications. In reality, most polymer OTFTs reported in the literature do not exhibit ideal characteristics. Supported by a structure-property relationship study of several low-disorder conjugated polymers, here, we present an empirical selection rule for polymer candidates for textbook-like OTFTs with high reliability factors (100% for ideal transistors). The successful candidates should have low energetic disorder along their backbones and form thin films with spatially uniform energetic landscapes. We demonstrate that these requirements are satisfied in the semicrystalline polymer PffBT4T-2DT, which exhibits a reliability factor (~100%) that is exceptionally high for polymer devices, rendering it an ideal candidate for OTFT applications. Our findings broaden the selection of polymer semiconductors with textbook-like OTFT characteristics and would shed light upon the molecular design criteria for next-generation polymer semiconductors.

7.
Adv Mater ; 34(36): e2202163, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35866352

RESUMEN

Mixed-halide mixed-cation hybrid perovskites are among the most promising perovskite compositions for application in a variety of optoelectronic devices due to their high performance, low cost, and bandgap-tuning capabilities. Instability pathways such as those driven by ionic migration, however, continue to hinder their further progress. Here, an operando variable-pitch synchrotron grazing-incidence wide-angle X-ray scattering technique is used to track the surface and bulk structural changes in mixed-halide mixed-cation perovskite solar cells under continuous load and illumination. By monitoring the evolution of the material structure, it is demonstrated that halide remixing along the electric field and illumination direction during operation hinders phase segregation and limits device instability. Correlating the evolution with directionality- and depth-dependent analyses, it is proposed that this halide remixing is induced by an electrostrictive effect acting along the substrate out-of-plane direction. However, this stabilizing effect is overwhelmed by competing halide demixing processes in devices exposed to humid air or with poorer starting performance. The findings shed new light on understanding halide de- and re-mixing competitions and their impact on device longevity. These operando techniques allow real-time tracking of the structural evolution in full optoelectronic devices and unveil otherwise inaccessible insights into rapid structural evolution under external stress conditions.

8.
ACS Energy Lett ; 5(6): 1900-1907, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32566752

RESUMEN

Quantum-confined CsPbBr3 nanoplatelets (NPLs) are extremely promising for use in low-cost blue light-emitting diodes, but their tendency to coalesce in both solution and film form, particularly under operating device conditions with injected charge-carriers, is hindering their adoption. We show that employing a short hexyl-phosphonate ligand (C6H15O3P) in a heat-up colloidal approach for pure, blue-emitting quantum-confined CsPbBr3 NPLs significantly suppresses these coalescence phenomena compared to particles capped with the typical oleyammonium ligands. The phosphonate-passivated NPL thin films exhibit photoluminescence quantum yields of ∼40% at 450 nm with exceptional ambient and thermal stability. The color purity is preserved even under continuous photoexcitation of carriers equivalent to LED current densities of ∼3.5 A/cm2. 13C, 133Cs, and 31P solid-state MAS NMR reveal the presence of phosphonate on the surface. Density functional theory calculations suggest that the enhanced stability is due to the stronger binding affinity of the phosphonate ligand compared to the ammonium ligand.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA