Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(20): e2219588120, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155894

RESUMEN

Aerosol microdroplets as microreactors for many important atmospheric reactions are ubiquitous in the atmosphere. pH largely regulates the chemical processes within them; however, how pH and chemical species spatially distribute within an atmospheric microdroplet is still under intense debate. The challenge is to measure pH distribution within a tiny volume without affecting the chemical species distribution. We demonstrate a method based on stimulated Raman scattering microscopy to visualize the three-dimensional pH distribution inside single microdroplets of varying sizes. We find that the surface of all microdroplets is more acidic, and a monotonic trend of pH decreasing is observed in the 2.9-µm aerosol microdroplet from center to edge, which is well supported by molecular dynamics simulation. However, bigger cloud microdroplet differs from small aerosol for pH distribution. This size-dependent pH distribution in microdroplets can be related to the surface-to-volume ratio. This work presents noncontact measurement and chemical imaging of pH distribution in microdroplets, filling the gap in our understanding of spatial pH in atmospheric aerosol.

2.
Nano Lett ; 24(1): 424-432, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153402

RESUMEN

Applying high pressure to effectively modulate the electronic and lattice structures of materials could unravel various physical properties associated with phase transitions. In this work, high-pressure-compatible femtosecond pump-probe microscopy was constructed to study the pressure-dependent ultrafast dynamics in black phosphorus (BP) thin films. We observed pressure-driven evolution of the electronic topological transition and three structural phases as the pressure reached ∼22 GPa, which could be clearly differentiated in the transient absorption images containing spatially resolved ultrafast carrier and coherent phonon dynamics. Surprisingly, an anomalous coherent acoustic phonon mode with pressure softening behavior was observed within the range of ∼3-8 GPa, showing distinct laser power and time dependences. Density functional theory calculations show that this mode, identified as the shear mode along the armchair orientation, gains significant electron-phonon coupling strength from out-of-plane compression that leads to decreased phonon frequency. Our results provide insights into the structure evolution of BP with pressure and hold potential for applications in microelectromechanical devices.

3.
Nat Mater ; 22(11): 1324-1331, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770676

RESUMEN

Two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, provide an opportunity for beyond-silicon exploration. However, the lab to fab transition of 2D semiconductors is still in its preliminary stages, and it has been challenging to meet manufacturing standards of stability and repeatability. Thus, there is a natural eagerness to grow wafer-level, high-quality films with industrially acceptable scale-cost-performance metrics. Here we report an improved chemical vapour deposition synthesis method in which the controlled release of precursors and substrates predeposited with amorphous Al2O3 ensure the uniform synthesis of monolayer MoS2 as large as 12 inches while also enabling fast and non-toxic growth to reduce manufacturing costs. Transistor arrays were fabricated to further confirm the high quality of the film and its integrated circuit application potential. This work achieves the co-optimization of scale-cost-performance metrics and lays the foundation for advancing the integration of 2D semiconductors in industry-standard pilot lines.

4.
Environ Sci Technol ; 58(21): 9091-9101, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38709279

RESUMEN

People of all ages consume salt every day, but is it really just salt? Plastic nanoparticles [nanoplastics (NPs)] pose an increasing environmental threat and have begun to contaminate everyday salt in consumer goods. Herein, we developed a combined surface enhanced Raman scattering (SERS) and stimulated Raman scattering (SRS) approach that can realize the filtration, enrichment, and detection of NPs in commercial salt. The Au-loaded (50 nm) anodic alumina oxide substrate was used as the SERS substrate to explore the potential types of NP contaminants in salts. SRS was used to conduct imaging and quantify the presence of the NPs. SRS detection was successfully established through standard plastics, and NPs were identified through the match of the hydrocarbon group of the nanoparticles. Simultaneously, the NPs were quantified based on the high spatial resolution and rapid imaging of the SRS imaging platform. NPs in sea salts produced in Asia, Australasia, Europe, and the Atlantic were studied. We estimate that, depending on the location, an average person could be ingesting as many as 6 million NPs per year through the consumption of sea salt alone. The potential health hazards associated with NP ingestion should not be underestimated.


Asunto(s)
Espectrometría Raman , Plásticos , Nanopartículas , Cloruro de Sodio/química
5.
Ann Rheum Dis ; 82(3): 416-427, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36109143

RESUMEN

OBJECTIVE: Increasing evidence suggests that impaired cartilage is a substantial risk factor for the progression from hyperuricaemia to gout. Since the relationship between cartilage matrix protein and gout flares remains unclear, we investigated its role in monosodium urate (MSU) crystallisation and following inflammation. METHODS: Briefly, we screened for cartilage matrix in synovial fluid from gouty arthritis patients with cartilage injuries. After identifying a correlation between crystals and matrix molecules, we conducted image analysis and classification of crystal phenotypes according to their morphology. We then evaluated the differences between the cartilage matrix protein-MSU complex and the pure MSU crystal in their interaction with immune cells and identified the related signalling pathway. RESULTS: Type II collagen (CII) was found to be enriched around MSU crystals in synovial fluid after cartilage injury. Imaging analysis revealed that CII regulated the morphology of single crystals and the alignment of crystal bows in the co-crystalline system, leading to greater phagocytosis and oxidative stress in macrophages. Furthermore, CII upregulated MSU-induced chemokine and proinflammatory cytokine expression in macrophages, thereby promoting the recruitment of leucocytes. Mechanistically, CII enhanced MSU-mediated inflammation by activating the integrin ß1(ITGB1)-dependent TLR2/4-NF-κB signal pathway. CONCLUSION: Our study demonstrates that the release of CII and protein-crystal adsorption modifies the crystal profile and promotes the early immune response in MSU-mediated inflammation. These findings open up a new path for understanding the relationship between cartilage injuries and the early immune response in gout flares.


Asunto(s)
Artritis Gotosa , Gota , Humanos , Artritis Gotosa/metabolismo , Ácido Úrico , Colágeno Tipo II , Proteínas Matrilinas , Inflamación/metabolismo , Citocinas/metabolismo
6.
Environ Sci Technol ; 57(50): 21448-21458, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38047763

RESUMEN

The efficient elimination of per- and polyfluoroalkyl substances (PFASs) from the environment remains a huge challenge and requires advanced technologies. Herein, we demonstrate that perfluorooctanoic acid (PFOA) photochemical decomposition could be significantly accelerated by simply carrying out this process in microdroplets. The almost complete removal of 100 and 500 µg/L PFOA was observed after 20 min of irradiation in microdroplets, while this was achieved after about 2 h in the corresponding bulk phase counterpart. To better compare the defluorination ratio, 10 mg/L PFOA was used typically, and the defluorination rates in microdroplets were tens of times faster than that in the bulk phase reaction system. The high performances in actual water matrices, universality, and scale-up applicability were demonstrated as well. We revealed in-depth that the great acceleration is due to the abundance of the air-water interface in microdroplets, where the reactants concentration enrichment, ultrahigh interfacial electric field, and partial solvation effects synergistically promoted photoreactions responsible for PFOA decomposition, as evidenced by simulated Raman scattering microscopy imaging, vibrational Stark effect measurement, and DFT calculation. This study provides an effective approach and highlights the important roles of air-water interface of microdroplets in PFASs treatment.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Agua , Caprilatos/química , Contaminantes Químicos del Agua/química
7.
J Phys Chem A ; 127(1): 250-260, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36595358

RESUMEN

Fe(III)-oxalate complexes are ubiquitous in atmospheric environments, which can release reactive oxygen species (ROS) such as H2O2, O•2-, and OH• under light irradiation. Although Fe(III)-oxalate photochemistry has been investigated extensively, the understanding of its involvement in authentic atmospheric environments such as aerosol droplets is far from enough, since the current available knowledge has mainly been obtained in bulk-phase studies. Here, we find that the production of OH• by Fe(III)-oxalate in aerosol microdroplets is about 10-fold greater than that of its bulk-phase counterpart. In addition, in the presence of Fe(III)-oxalate complexes, the rate of photo-oxidation from SO2 to sulfate in microdroplets was about 19-fold faster than that in the bulk phase. The availability of efficient reactants and mass transfer due to droplet effects made dominant contributions to the accelerated OH• and SO42- formation. This work highlights the necessary consideration of droplet effects in atmospheric laboratory studies and model simulations.

8.
Opt Express ; 30(5): 7636-7646, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299521

RESUMEN

We report the generation of parabolic pulses with broadband spectrum from a core-pumped Yb-doped fiber amplifier seeded by a dispersion managed fiber oscillator. The net cavity dispersion of Yb-doped oscillator was continuously changed from 0.074 to -0.170 ps2, which enabled us to achieve dissipative soliton, stretched pulse and soliton mode-locking operations. Spectral evolution processes in the core-pumped nonlinear fiber amplifier seeded by various input solitons were investigated experimentally and theoretically. Our finding indicates that cavity dispersion of oscillator can be used to engineer the input pulse parameter for amplifier, thus forming a pre-chirper free fiber amplification structure. In the experiment, we obtained 410-mW parabolic pulses with spectral bandwidth up to 56 nm. In combination with a passively synchronized frequency-doubled Er-doped fiber laser, we have demonstrated coherent anti-Stokes Raman imaging. The compact dual-color fiber laser source may facilitate practical applications of nonlinear biomedical imaging beyond the laboratory environment.

9.
Opt Express ; 30(15): 27780-27793, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236941

RESUMEN

We propose a composite acousto-optical modulation (AOM) scheme for wide-band, efficient modulation of CW and pulsed lasers. We show that by adjusting the amplitudes and phases of weakly-driven daughter AOMs, diffraction beyond the Bragg condition can be achieved with exceptional efficiencies. Furthermore, by imaging pairs of AOMs with opposite directions of sound-wave propagation, high contrast switching of output orders can be achieved at the driving radio frequency (rf) limit, thereby enabling efficient bidirectional routing of a synchronized mode-locked laser. Here we demonstrate a simplest example of such scheme with a double-AOM setup for efficient diffraction across an octave of rf bandwidth, and for routing a mode-locked pulse train with up to frep = 400 MHz repetition rate. We discuss extension of the composite scheme toward multi-path routing and time-domain multiplexing, so as to individually shape each pulses of ultrafast lasers for novel quantum control applications.

10.
Anal Chem ; 93(15): 6223-6231, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33826297

RESUMEN

Precise evaluation of breast tumor malignancy based on tissue calcifications has important practical value in the disease diagnosis, as well as the understanding of tumor development. Traditional X-ray mammography provides the overall morphologies of the calcifications but lacks intrinsic chemical information. In contrast, spontaneous Raman spectroscopy offers detailed chemical analysis but lacks the spatial profiles. Here, we applied hyperspectral stimulated Raman scattering (SRS) microscopy to extract both the chemical and morphological features of the microcalcifications, based on the spectral and spatial domain analysis. A total of 211 calcification sites from 23 patients were imaged with SRS, and the results were analyzed with a support vector machine (SVM) based classification algorithm. With optimized combinations of chemical and geometrical features of microcalcifications, we were able to reach a precision of 98.21% and recall of 100.00% for classifying benign and malignant cases, significantly improved from the pure spectroscopy or imaging based methods. Our findings may provide a rapid means to accurately evaluate breast tumor malignancy based on fresh tissue biopsies.


Asunto(s)
Enfermedades de la Mama , Neoplasias de la Mama , Calcinosis , Biopsia , Neoplasias de la Mama/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Femenino , Humanos , Espectrometría Raman
11.
Anal Chem ; 93(46): 15550-15558, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34751027

RESUMEN

Surgeries achieving maximal tumor resection remain the major effective treatment of pancreatic cancer. Rapid and precise intraoperative diagnosis of pancreatic tissues is critical for optimum surgical outcomes but is challenging for the current staining-based histological methods. We demonstrated that label-free coherent nonlinear optical microscopy with combined stimulated Raman scattering (SRS) and second harmonic generation (SHG) could reveal key diagnostic features of both normal and cancerous human pancreatic tissues. Adjacent pairs of tissue sections from resection margins of 37 patients were imaged by SRS and hematoxylin and eosin staining for direct comparison, demonstrating high diagnostic concordance (Cohen's kappa, κ > 0.97) between them. Fresh unprocessed tissues showed well-preserved histoarchitectures including pancreatic ducts, islets, acini, and nerves. Moreover, the area ratios of collagen fibers were analyzed and found to correlate with the drainage pancreatic amylase level (odds ratio = 28.0, p = 0.0017). Our results indicated that SRS/SHG histology provides potential for rapid intraoperative diagnosis of pancreatic cancer as well as a predictive value of postoperative pancreatic fistula.


Asunto(s)
Microscopía Óptica no Lineal , Neoplasias Pancreáticas , Técnicas Histológicas , Humanos , Páncreas/diagnóstico por imagen , Neoplasias Pancreáticas/diagnóstico por imagen , Espectrometría Raman
12.
Opt Express ; 28(9): 13721-13730, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32403841

RESUMEN

We have proposed and implemented a polarization-maintaining passively synchronized fiber laser system, which could deliver tunable dual-color picosecond pulses by including a frequency-doubling module and a spectral broadening module. Specifically, the output from the involved Er-doped fiber laser were used to generate second-harmonic pulses at 790 nm with a quadratic nonlinear crystal. In parallel, the amplified pulses from the synchronized Yb-doped fiber laser were launched into a 150-m single mode fiber, which resulted in not only substantial spectral bandwidth broadening from 0.1 to 20.1 nm, but also a significant Raman-induced signal around 1080 nm. Consequently, narrow spectra from 1018-1051 nm and 1070-1095 nm could be continuously tuned via a tunable bandpass filter, corresponding to Raman bonds from 2835-3143 cm-1 and 3312-3525 cm-1. Finally, the achieved tunable synchronized pulses enabled us to microscopically examine mouse ear samples based on coherent anti-Stokes Raman and second harmonic generation imaging. Therefore, our tunable passively-synchronized fiber laser system would be promising to provide a simple and compact laser source for subsequent coherent Raman microscopy.

13.
Anal Chem ; 96(20): 7907-7925, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38713830
14.
Nano Lett ; 18(5): 3053-3059, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29684276

RESUMEN

Black phosphorus is a layered semiconducting material, demonstrating strong layer-dependent optical and electronic properties. Probing the photophysical properties on ultrafast time scales is of central importance in understanding many-body interactions and nonequilibrium quasiparticle dynamics. Here, we applied temporally, spectrally, and spatially resolved pump-probe microscopy to study the transient optical responses of mechanically exfoliated few-layer black phosphorus, with layer numbers ranging from 2 to 9. We have observed layer-dependent resonant transient absorption spectra with both photobleaching and red-shifted photoinduced absorption features, which could be attributed to band gap renormalization of higher subband transitions. Surprisingly, coherent phonon oscillations with unprecedented intensities were observed when the probe photons were in resonance with the optical transitions, which correspond to the low-frequency layer-breathing mode. Our results reveal strong Coulomb interactions and electron-phonon couplings in photoexcited black phosphorus, providing important insights into the ultrafast optical, nanomechanical, and optoelectronic properties of this novel two-dimensional material.

15.
Proc Natl Acad Sci U S A ; 112(37): 11624-9, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26324899

RESUMEN

Label-free DNA imaging is highly desirable in biology and medicine to perform live imaging without affecting cell function and to obtain instant histological tissue examination during surgical procedures. Here we show a label-free DNA imaging method with stimulated Raman scattering (SRS) microscopy for visualization of the cell nuclei in live animals and intact fresh human tissues with subcellular resolution. Relying on the distinct Raman spectral features of the carbon-hydrogen bonds in DNA, the distribution of DNA is retrieved from the strong background of proteins and lipids by linear decomposition of SRS images at three optimally selected Raman shifts. Based on changes on DNA condensation in the nucleus, we were able to capture chromosome dynamics during cell division both in vitro and in vivo. We tracked mouse skin cell proliferation, induced by drug treatment, through in vivo counting of the mitotic rate. Furthermore, we demonstrated a label-free histology method for human skin cancer diagnosis that provides comparable results to other conventional tissue staining methods such as H&E. Our approach exhibits higher sensitivity than SRS imaging of DNA in the fingerprint spectral region. Compared with spontaneous Raman imaging of DNA, our approach is three orders of magnitude faster, allowing both chromatin dynamic studies and label-free optical histology in real time.


Asunto(s)
ADN/análisis , Microscopía , Neoplasias Cutáneas/diagnóstico , Espectrometría Raman , Animales , División Celular , Núcleo Celular/metabolismo , Proliferación Celular , ADN/química , Diagnóstico por Imagen , Femenino , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Lípidos/química , Ratones , Ratones Desnudos , Mitosis , Neoplasias Cutáneas/metabolismo
16.
Opt Lett ; 42(4): 659-662, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28198892

RESUMEN

Stimulated Raman scattering (SRS) microscopy that is capable of both high-speed imaging and rapid spectroscopy will be advantageous for detailed chemical analysis of heterogeneous biological specimens. We have developed a system based on spectral focusing SRS technology with the integration of a rapid scanning optical delay line, which allows continuous tuning of SRS spectra by scanning a galvo mirror. We demonstrate SRS spectral measurements of dimethyl sulfoxide solution at low concentrations and multi-color imaging of rice pollens and HeLa cells with line-by-line delay tuning to reduce motion artifacts, as well as fast acquisition of SRS spectra at specific regions of interest.


Asunto(s)
Microscopía/métodos , Dispositivos Ópticos , Espectrometría Raman/métodos , Células HeLa , Humanos , Microscopía/instrumentación , Oryza , Polen/citología , Espectrometría Raman/instrumentación , Factores de Tiempo
17.
Proc Natl Acad Sci U S A ; 108(40): 16612-7, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21949360

RESUMEN

Understanding how electric fields and their fluctuations in the active site of enzymes affect efficient catalysis represents a critical objective of biochemical research. We have directly measured the dynamics of the electric field in the active site of a highly proficient enzyme, Δ(5)-3-ketosteroid isomerase (KSI), in response to a sudden electrostatic perturbation that simulates the charge displacement that occurs along the KSI catalytic reaction coordinate. Photoexcitation of a fluorescent analog (coumarin 183) of the reaction intermediate mimics the change in charge distribution that occurs between the reactant and intermediate state in the steroid substrate of KSI. We measured the electrostatic response and angular dynamics of four probe dipoles in the enzyme active site by monitoring the time-resolved changes in the vibrational absorbance (IR) spectrum of a spectator thiocyanate moiety (a quantitative sensor of changes in electric field) placed at four different locations in and around the active site, using polarization-dependent transient vibrational Stark spectroscopy. The four different dipoles in the active site remain immobile and do not align to the changes in the substrate electric field. These results indicate that the active site of KSI is preorganized with respect to functionally relevant changes in electric fields.


Asunto(s)
Dominio Catalítico/genética , Modelos Moleculares , Pseudomonas putida/enzimología , Electricidad Estática , Esteroide Isomerasas/metabolismo , Catálisis , Dicroismo Circular , Espectrometría de Masas , Mutación Missense/genética , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Esteroide Isomerasas/química
18.
Research (Wash D C) ; 7: 0373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803506

RESUMEN

Gout, a common form of arthritis, is characterized by the deposition of monosodium urate (MSU) crystals in joints. MSU deposition in synovial tissues would initiate arthritis flares and recurrence, causing irreversible joint damage. However, the dynamic deposition of MSU crystals in tissues lacks experimental observation. In this study, we used chemical-specific, label-free stimulated Raman scattering (SRS) microscopy to investigate the spatiotemporal deposition and morphological characteristics of MSU crystals in human synovial organoids. Our findings revealed a critical 12-h window for MSU deposition in the lining layer of gouty synovium. Moreover, distinctive inflammatory reactions of the lining and sublining synovial layers in gout using SRS microscopy were further verified by immunofluorescence. Importantly, we identified a crucial proinflammatory role of sublining fibroblast-like synoviocytes, indicating a need for targeted medication treatment on these cells. Our work contributes to the fundamental understanding of MSU-based diseases and offers valuable insights for the future development of targeted gout therapies.

19.
Sci Adv ; 10(13): eadn3426, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536925

RESUMEN

Intraoperative histology is essential for surgical guidance and decision-making. However, frozen-sectioned hematoxylin and eosin (H&E) staining suffers from degraded accuracy, whereas the gold-standard formalin-fixed and paraffin-embedded (FFPE) H&E is too lengthy for intraoperative use. Stimulated Raman scattering (SRS) microscopy has shown rapid histology of brain tissue with lipid/protein contrast but is challenging to yield images identical to nucleic acid-/protein-based FFPE stains interpretable to pathologists. Here, we report the development of a semi-supervised stimulated Raman CycleGAN model to convert fresh-tissue SRS images to H&E stains using unpaired training data. Within 3 minutes, stimulated Raman virtual histology (SRVH) results that matched perfectly with true H&E could be generated. A blind validation indicated that board-certified neuropathologists are able to differentiate histologic subtypes of human glioma on SRVH but hardly on conventional SRS images. SRVH may provide intraoperative diagnosis superior to frozen H&E in both speed and accuracy, extendable to other types of solid tumors.


Asunto(s)
Encéfalo , Colorantes , Humanos , Adhesión en Parafina/métodos , Coloración y Etiquetado , Eosina Amarillenta-(YS) , Formaldehído
20.
J Exp Med ; 221(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805014

RESUMEN

Phenotypic plasticity is a rising cancer hallmark, and lung adeno-to-squamous transition (AST) triggered by LKB1 inactivation is significantly associated with drug resistance. Mechanistic insights into AST are urgently needed to identify therapeutic vulnerability in LKB1-deficient lung cancer. Here, we find that ten-eleven translocation (TET)-mediated DNA demethylation is elevated during AST in KrasLSL-G12D/+; Lkb1L/L (KL) mice, and knockout of individual Tet genes reveals that Tet2 is required for squamous transition. TET2 promotes neutrophil infiltration through STAT3-mediated CXCL5 expression. Targeting the STAT3-CXCL5 nexus effectively inhibits squamous transition through reducing neutrophil infiltration. Interestingly, tumor-infiltrating neutrophils are laden with triglycerides and can transfer the lipid to tumor cells to promote cell proliferation and squamous transition. Pharmacological inhibition of macropinocytosis dramatically inhibits neutrophil-to-cancer cell lipid transfer and blocks squamous transition. These data uncover an epigenetic mechanism orchestrating phenotypic plasticity through regulating immune microenvironment and metabolic communication, and identify therapeutic strategies to inhibit AST.


Asunto(s)
Quimiocina CXCL5 , Proteínas de Unión al ADN , Dioxigenasas , Neoplasias Pulmonares , Neutrófilos , Proteínas Proto-Oncogénicas , Factor de Transcripción STAT3 , Animales , Neutrófilos/metabolismo , Factor de Transcripción STAT3/metabolismo , Ratones , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Humanos , Dioxigenasas/metabolismo , Pinocitosis , Línea Celular Tumoral , Infiltración Neutrófila , Ratones Noqueados , Ratones Endogámicos C57BL , Metabolismo de los Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA