Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(12): 6345-6398, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38742651

RESUMEN

Small molecule donors (SMDs) play subtle roles in the signaling mechanism and disease treatments. While many excellent SMDs have been developed, dosage control, targeted delivery, spatiotemporal feedback, as well as the efficiency evaluation of small molecules are still key challenges. Accordingly, fluorescent small molecule donors (FSMDs) have emerged to meet these challenges. FSMDs enable controllable release and non-invasive real-time monitoring, providing significant advantages for drug development and clinical diagnosis. Integration of FSMDs with chemotherapeutic, photodynamic or photothermal properties can take full advantage of each mode to enhance therapeutic efficacy. Given the remarkable properties and the thriving development of FSMDs, we believe a review is needed to summarize the design, triggering strategies and tracking mechanisms of FSMDs. With this review, we compiled FSMDs for most small molecules (nitric oxide, carbon monoxide, hydrogen sulfide, sulfur dioxide, reactive oxygen species and formaldehyde), and discuss recent progress concerning their molecular design, structural classification, mechanisms of generation, triggered release, structure-activity relationships, and the fluorescence response mechanism. Firstly, from the large number of fluorescent small molecular donors available, we have organized the common structures for producing different types of small molecules, providing a general strategy for the development of FSMDs. Secondly, we have classified FSMDs in terms of the respective donor types and fluorophore structures. Thirdly, we discuss the mechanisms and factors associated with the controlled release of small molecules and the regulation of the fluorescence responses, from which universal guidelines for optical properties and structure rearrangement were established, mainly involving light-controlled, enzyme-activated, reactive oxygen species-triggered, biothiol-triggered, single-electron reduction, click chemistry, and other triggering mechanisms. Fourthly, representative applications of FSMDs for trackable release, and evaluation monitoring, as well as for visible in vivo treatment are outlined, to illustrate the potential of FSMDs in drug screening and precision medicine. Finally, we discuss the opportunities and remaining challenges for the development of FSMDs for practical and clinical applications, which we anticipate will stimulate the attention of researchers in the diverse fields of chemistry, pharmacology, chemical biology and clinical chemistry. With this review, we hope to impart new understanding thereby enabling the rapid development of the next generation of FSMDs.


Asunto(s)
Colorantes Fluorescentes , Bibliotecas de Moléculas Pequeñas , Humanos , Colorantes Fluorescentes/química , Bibliotecas de Moléculas Pequeñas/química , Especies Reactivas de Oxígeno/metabolismo , Animales , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo
2.
Angew Chem Int Ed Engl ; 63(15): e202400459, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38317310

RESUMEN

We realized the microenvironment-differential Imaging of demethylated metabolites of methionine and the regional regulation of ferroptosis.


Asunto(s)
Ferroptosis , Metionina , Fluorescencia , Racemetionina , Diagnóstico por Imagen , Microambiente Tumoral
3.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895219

RESUMEN

Hereditary defects in the function of the Kir7.1 in the retinal pigment epithelium are associated with the ocular diseases retinitis pigmentosa, Leber congenital amaurosis, and snowflake vitreal degeneration. Studies also suggest that Kir7.1 may be regulated by a GPCR, the melanocortin-4 receptor, in certain hypothalamic neurons. We present the first structures of human Kir7.1 and describe the conformational bias displayed by two pathogenic mutations, R162Q and E276A, to provide an explanation for the basis of disease and illuminate the gating pathway. We also demonstrate the structural basis for the blockade of the channel by a small molecule ML418 and demonstrate that channel blockade in vivo activates MC4R neurons in the paraventricular nucleus of the hypothalamus (PVH), inhibiting food intake and inducing weight loss. Preliminary purification, and structural and pharmacological characterization of an in tandem construct of MC4R and Kir7.1 suggests that the fusion protein forms a homotetrameric channel that retains regulation by liganded MC4R molecules.

4.
Chem Commun (Camb) ; 60(20): 2716-2731, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38353179

RESUMEN

Real-time monitoring of biocatalytic-based processes is significantly improved and simplified when they can be visualized. Visual monitoring can be achieved by integrating a fluorescent unit with the biocatalyst. Herein, we outline the design strategies of fluorescent probes for monitoring biocatalysis: (1) probes for monitoring biocatalytic transfer: γ-glutamine is linked to the fluorophore as both a recognition group and for intramolecular charge transfer (ICT) inhibition; the probe is initially in an off state and is activated via the transfer of the γ-glutamine group and the release of the free amino group, which results in restoration of the "Donor-π-Acceptor" (D-π-A) system and fluorescence recovery. (2) Probes for monitoring biocatalytic oxidation: a propylamine is connected to the fluorophore as a recognition group, which cages the hydroxyl group, leading to the inhibition of ICT; propylamine is oxidized and subsequently ß-elimination occurs, resulting in exposure of the hydroxyl group and fluorescence recovery. (3) Probes for monitoring biocatalytic reduction: a nitro group attached to a fluorophore as a fluorescence quenching group, this is converted to an amino group by catalytic reduction, resulting in fluorescence recovery. (4) Probes for monitoring biocatalytic hydrolysis: ß-D-galactopyranoside or phosphate acts as a recognition group attached to hydroxyl groups of the fluorophore; the subsequent biocatalytic hydrolysis reaction releases the hydroxyl group resulting in fluorescence recovery. Following these 4 mechanisms, fluorophores including cyanine, coumarin, rhodamine, and Nile-red, have been used to develop systems for monitoring biocatalytic reactions. We anticipate that these strategies will result in systems able to rapidly diagnose and facilitate the treatment of serious diseases.


Asunto(s)
Colorantes Fluorescentes , Glutamina , Biocatálisis , Rodaminas , Propilaminas
5.
Math Biosci Eng ; 20(2): 4274-4321, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36899627

RESUMEN

The studies of impulsive dynamical systems have been thoroughly explored, and extensive publications have been made available. This study is mainly in the framework of continuous-time systems and aims to give an exhaustive review of several main kinds of impulsive strategies with different structures. Particularly, (i) two kinds of impulse-delay structures are discussed respectively according to the different parts where the time delay exists, and some potential effects of time delay in stability analysis are emphasized. (ii) The event-based impulsive control strategies are systematically introduced in the light of several novel event-triggered mechanisms determining the impulsive time sequences. (iii) The hybrid effects of impulses are emphatically stressed for nonlinear dynamical systems, and the constraint relationships between different impulses are revealed. (iv) The recent applications of impulses in the synchronization problem of dynamical networks are investigated. Based on the above several points, we make a detailed introduction for impulsive dynamical systems, and some significant stability results have been presented. Finally, several challenges are suggested for future works.

6.
Medicine (Baltimore) ; 102(35): e34931, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657032

RESUMEN

Primary central nervous system lymphoma (PCNSL) is a rare and special type of non-Hodgkin lymphoma with a significantly worse median overall prognosis than that of non-Hodgkin lymphoma outside the brain. Clarifying the genomic characteristics and alterations in PCNSL could provide clues regarding its distinctive pathophysiology and new treatment options. However, current knowledge about the genomics of PCNSL is limited. In this study, next-generation sequencing (NGS) was performed to investigate the genomic profile of PCNSL. Samples from 12 patients diagnosed with PCNSL at our institution were analyzed for gene mutations using NGS. This study showed that missense mutations were the most common mutation type. C > A/G > T accounted for most of the single-base mutations, which reflected the preference of the tumor sample mutation type and may serve as an important prognostic factor. The most significantly mutated gene was myeloid differentiation factor 88 (MYD88) (0.55), followed by CD79B, LRP1B, and PRDM1 (0.36). None of the cases showed a high tumor mutational burden. In addition to the traditional driver genes, we also identified some new possible ones such as MET, PIM1, and RSBN1L. Enrichment analysis revealed that genes mutated in PCNSL were involved in many pathways and functional protein activities, such as the extracellular matrix and adhesion molecules. The most common genetic alterations in PCNSL were identified using NGS. Mutations in multiple genes highlights the complex molecular heterogeneity of PCNSL. Enrichment analysis revealed possible pathogenesis. Further exploration of new driver genes could provide novel insights into diagnosis and precision medicine for PCNSL.


Asunto(s)
Genómica , Linfoma no Hodgkin , Humanos , Encéfalo , Matriz Extracelular , Instituciones de Salud
7.
Eur J Med Chem ; 250: 115198, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805946

RESUMEN

Janus tyrosine kinase (JAK) inhibitors have been on the market for several years, but their use is limited by drug resistance and intolerable side effects. Herein, we propose a novel strategy of JAK tyrosine kinase (TK) and pseudokinase (PK) domain co-inhibition system to consolidate robust JAK inhibition and on-demand activation. A photoexcited prodrug PAT-SIL-TG-1&AT exhibits the synergy effects of TK-PK co-inhibition and enable the spatiotemporal control of JAK2 signaling. The hypoxia-activated prodrug HAT-SIL-TG-1&AT significantly inhibited HEL cells proliferation and downregulated phosphorylated STAT3/5 under hypoxic conditions. Importantly, HAT-SIL-TG-1&AT showed synergistic antitumor effects and selectively inhibited the JAK-STAT signaling in tumor tissues in vivo. This work demonstrates a viable solution to achieve superior JAK2 inhibition, and provides an inspiration for other kinases containing PK domain.


Asunto(s)
Profármacos , Tirosina , Tirosina/farmacología , Profármacos/farmacología , Janus Quinasa 2/metabolismo , Transducción de Señal , Fosforilación , Factor de Transcripción STAT3 , Proliferación Celular
8.
Eur J Med Chem ; 238: 114423, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35544982

RESUMEN

Sepsis has long been a major health problem worldwide. It threatens the lives of hospitalized patients and has been one of the leading causes of death in hospitalized patients over the past decades. BRD4 has been regarded as a potential target for sepsis therapy, for its critical role in the transcriptional expression of NF-κB pathway-dependent inflammatory factors. In this study, compound 1 was obtained through virtual screening, and candidate compound 27 was obtained through several rounds of iterative SAR analysis. 27 decreased LPS-induced NO production and expression of the pro-inflammatory factors IL-6, IL-1ß and TNF-α. In vivo, 27 effectively protected mice from LPS-induced sepsis, increased survival rate and decreased the level of pro-inflammatory factors in serum. Collectively, we reported here 27, a BRD4 inhibitor with a new scaffold, as a potential candidate for the treatment of sepsis.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Nucleares , Sepsis , Factores de Transcripción , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Humanos , Lipopolisacáridos , Ratones , FN-kappa B/metabolismo , Sepsis/tratamiento farmacológico , Factores de Transcripción/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA