Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Prostate ; 83(12): 1167-1175, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37189301

RESUMEN

BACKGROUND: This study aimed to evaluate the effectiveness of 18 F-fluoro-2-deoxy-D-glucose Positron emission tomography/computed tomography (18 F-FDG PET/CT) in predicting prognosis and characterizing the intratumoral glucose uptake of neuroendocrine prostate cancer (NEPC). METHODS: We retrospectively reviewed 189 NEPC patients from two medical centers between January 2009 and April 2021. Of these, 44 patients met the inclusion criteria. The maximum standardized uptake value (SUVmax) was measured to assess the metabolic state of NEPC and comparison were made between different histopathological subtypes. Kaplan-Meier and Cox regression analyses were performed to evaluate the predictive value of SUVmax on overall survival (OS) and progression-free survival (PFS). RESULTS: This study analyzed 44 NEPC patients and found that 13 patients had small cell neuroendocrine carcinoma (SCNC), while 31 were diagnosed with adenocarcinoma with neuroendocrine differentiation (Ad-NED) based on histopathology, and a positive correlation was found between SUVmax and SCNC via Spearman correlation test (rs = 0.60, p < 0.0001). Furthermore, SUVmax demonstrated good diagnostic accuracy in differentiating SCNC from Ad-NED (area under the curve 0.88, 95% confidence interval [CI] 0.76-0.99). Kaplan-Meier survival analyses and univariate analyses revealed that patients with SUVmax > 10.2 had a significantly shorter OS than patients with SUVmax ≤ 10.2 (hazard ratio = 4.83, 95% CI 1.45-16.1, p = 0.01). CONCLUSIONS: The histopathological subtypes in NEPC showed a close correlation with the glucose metabolic activity of primary tumors as assessed by 18 F-FDG PET/CT. High SUVmax values in primary prostate tumors were associated with a worse OS in NEPC patients.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Radiofármacos , Estudios Retrospectivos , Tomografía de Emisión de Positrones , Pronóstico , Neoplasias de la Próstata/diagnóstico por imagen
2.
Exp Cell Res ; 415(2): 113138, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35398308

RESUMEN

Serine hydroxymethyltransferase 2 (SHMT2) is a key enzyme that regulates serine/glycine transition; however, its specific function and molecular mechanisms in tumors remain controversial. In this study, we aimed to enhance the understanding in this regard. Through in vitro and in vivo experiments, as well as data analyses using public databases, we investigated the effect of SHMT2 in prostate cancer. Our results indicated that SHMT2 acts as a prostate cancer tumor proliferation suppressor and negatively regulates the aggressive behavior of prostate cancer through activation of epithelial-mesenchymal transition. Additionally, downregulated SHMT2 expression was observed in more advanced prostate cancer phenotypes, and further analysis showed that its depletion promoted proliferation and migration in prostate cancer cell lines. Taken together, our results revealed the function of SHMT2 in prostate cancer and may potentially play a role in the exploration of new therapeutic strategies.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias de la Próstata , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Masculino , Metástasis de la Neoplasia , Neoplasias de la Próstata/genética
3.
Int J Cancer ; 148(12): 3060-3070, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33521930

RESUMEN

The HOX genes are a group of highly conserved Homeobox-containing genes that control the body plan organization during development. However, their contributions to tumorigenesis and tumor progression remain uncertain and controversial. Here we provided evidence of tumor-suppressive activity of HOXD13 in prostate cancer. HOXD13 depletion contributes to more aggressiveness of prostate cancer cells in vitro and in vivo. These effects were corroborated in a metastatic mice model, where we observed more bone metastatic lesions formed by prostate cancer cells with HOXD13 ablation. Mechanistically, HOXD13 prevents BMP4-induced epithelial-mesenchymal transition (EMT) by inhibiting mothers against decapentaplegic homolog 1 (SMAD1) transcription. Both bioinformation and our tissue microarray cohort data show that HOXD13 expression inversely correlated in advanced prostate cancer patient specimens. Our findings establish HOXD13 as a negative regulator of prostate cancer progression and metastasis by preventing BMP4/SMAD1 signaling, and potentially suggest new strategies for targeting metastatic prostate cancer.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neoplasias de la Próstata/patología , Proteína Smad1/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
4.
Magn Reson Med ; 80(5): 2246-2255, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29607551

RESUMEN

PURPOSE: To study the role of temperature in biological systems, diagnostic contrasts and thermal therapies, RF pulses for MR spin excitation can be deliberately used to apply a thermal stimulus. This application requires dedicated transmit/receive (Tx/Rx) switches that support high peak powers for MRI and high average powers for RF heating. To meet this goal, we propose a high-performance Tx/Rx switch based on positive-intrinsic-negative diodes and quarter-wavelength (λ/4) stubs. METHODS: The λ/4 stubs in the proposed Tx/Rx switch design route the transmitted RF signal directly to the RF coil/antenna without passing through any electronic components (e.g., positive-intrinsic-negative diodes). Bench measurements, MRI, MR thermometry, and RF heating experiments were performed at f = 297 MHz (B0 = 7 T) to examine the characteristics and applicability of the switch. RESULTS: The proposed design provided an isolation of -35.7dB/-41.5dB during transmission/reception. The insertion loss was -0.41dB/-0.27dB during transmission/reception. The switch supports high peak (3.9 kW) and high average (120 W) RF powers for MRI and RF heating at f = 297 MHz. High-resolution MRI of the wrist yielded image quality competitive with that obtained with a conventional Tx/Rx switch. Radiofrequency heating in phantom monitored by MR thermometry demonstrated the switch applicability for thermal modulation. Upon these findings, thermally activated release of a model drug attached to thermoresponsive polymers was demonstrated. CONCLUSION: The high-power Tx/Rx switch enables thermal MR applications at 7 T, contributing to the study of the role of temperature in biological systems and diseases. All design files of the switch will be made available open source at www.opensourceimaging.org.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Termometría/instrumentación , Diseño de Equipo , Calor , Humanos , Fantasmas de Imagen , Ondas de Radio , Relación Señal-Ruido , Muñeca/diagnóstico por imagen
5.
Int J Hyperthermia ; 32(1): 63-75, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26708630

RESUMEN

Clinically established thermal therapies such as thermoablative approaches or adjuvant hyperthermia treatment rely on accurate thermal dose information for the evaluation and adaptation of the thermal therapy. Intratumoural temperature measurements have been correlated successfully with clinical end points. Magnetic resonance imaging is the most suitable technique for non-invasive thermometry avoiding complications related to invasive temperature measurements. Since the advent of MR thermometry two decades ago, numerous MR thermometry techniques have been developed, continuously increasing accuracy and robustness for in vivo applications. While this progress was primarily focused on relative temperature mapping, current and future efforts will likely close the gap towards quantitative temperature readings. These efforts are essential to benchmark thermal therapy efficiency, to understand temperature-related biophysical and physiological processes and to use these insights to set new landmarks for diagnostic and therapeutic applications. With that in mind, this review summarises and discusses advances in MR thermometry, providing practical considerations, pitfalls and technical obstacles constraining temperature measurement accuracy, spatial and temporal resolution in vivo. Established approaches and current trends in thermal therapy hardware are surveyed with respect to potential benefits for MR thermometry.


Asunto(s)
Hipertermia Inducida , Espectroscopía de Resonancia Magnética , Termometría/métodos , Humanos , Neoplasias/terapia , Termometría/instrumentación
6.
Magn Reson Med ; 74(4): 999-1010, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25293952

RESUMEN

PURPOSE: Examine radiofrequency (RF) induced heating of coronary stents at 7.0 Tesla (T) to derive an analytical approach which supports RF heating assessment of arbitrary stent geometries and RF coils. METHODS: Simulations are performed to detail electromagnetic fields (EMF), local specific absorption rates (SAR) and temperature changes. For validation E-field measurements and RF heating experiments are conducted. To progress to clinical setups RF coils tailored for cardiac MRI at 7.0T and coronary stents are incorporated into EMF simulations using a human voxel model. RESULTS: Our simulations of coronary stents at 297 MHz were confirmed by E-field and temperature measurements. An analytical solution which describes SAR(1g tissue voxel) induced by an arbitrary coronary stent interfering with E-fields generated by an arbitrary RF coil was derived. The analytical approach yielded a conservative estimation of induced SAR(1g tissue voxel) maxima without the need for integrating the stent into EMF simulations of the human voxel model. CONCLUSION: The proposed analytical approach can be applied for any patient, coronary stent type, RF coil configuration and RF transmission regime. The generalized approach is of value for RF heating assessment of other passive electrically conductive implants and provides a novel design criterion for RF coils.


Asunto(s)
Calor , Imagen por Resonancia Magnética/efectos adversos , Modelos Teóricos , Stents , Campos Electromagnéticos , Humanos , Fantasmas de Imagen , Ondas de Radio , Termometría
7.
NMR Biomed ; 28(6): 726-37, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25916199

RESUMEN

The purpose of this study was to evaluate the feasibility of an eight-channel dual-tuned transceiver surface RF coil array for combined (1)H/(19)F MR of the human knee at 7.0 T following application of (19)F-containing drugs. The (1)H/(19)F RF coil array includes a posterior module with two (1)H loop elements and two anterior modules, each consisting of one (1)H and two (19)F elements. The decoupling of neighbor elements is achieved by a shared capacitor. Electromagnetic field simulations were performed to afford uniform transmission fields and to be in accordance with RF safety guidelines. Localized (19)F MRS was conducted with 47 and 101 mmol/L of flufenamic acid (FA) ­ a (19)F-containing non-steroidal anti-inflammatory drug ­ to determine T1 and T2 and to study the (19)F signal-to-dose relationship. The suitability of the proposed approach for (1)H/(19)F MR was examined in healthy subjects. Reflection coefficients of each channel were less than -17 dB and coupling between channels was less than -11 dB. Q(L)/Q(U) was less than 0.5 for all elements. MRS results demonstrated signal stability with 1% variation. T1 and T2 relaxation times changed with concentration of FA: T1 /T2 = 673/31 ms at 101 mmol/L and T1 /T2 = 616/26 ms at 47 mmol/L. A uniform signal and contrast across the patella could be observed in proton imaging. The sensitivity of the RF coil enabled localization of FA ointment administrated to the knee with an in-plane spatial resolution of (1.5 × 1.5) mm(2) achieved in a total scan time of approximately three minutes, which is well suited for translational human studies. This study shows the feasibility of combined (1)H/(19)F MRI of the knee at 7.0 T and proposes T1 and T2 mapping methods for quantifying fluorinated drugs in vivo. Further technological developments are necessary to promote real-time bioavailability studies and quantification of (19)F-containing medicinal compounds in vivo.


Asunto(s)
Ácido Flufenámico/farmacocinética , Imagen por Resonancia Magnética con Fluor-19/instrumentación , Rodilla/fisiología , Imagen Molecular/instrumentación , Espectroscopía de Protones por Resonancia Magnética/instrumentación , Transductores , Adulto , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Diseño de Equipo , Análisis de Falla de Equipo , Femenino , Ácido Flufenámico/administración & dosificación , Humanos , Masculino , Imagen Molecular/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
8.
Front Physiol ; 14: 1113270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866175

RESUMEN

Background: The viewpoints of previous studies on the correlation between exercise and cellular lipid peroxidation are contradictory from many perspectives and lack evidence for elder individuals. A new systematic review with network meta-analysis is necessary and will have significant practical value to provide high-quality evidence in the development of exercise protocols and an evidence-based guide for antioxidant supplementation for the elderly. Aims: To identify the cellular lipid peroxidation induced by different types of exercise, with or without antioxidant supplementation, in elderly individuals. Methods: Randomized controlled trials that recruited elderly participants and reported cellular lipid peroxidation indicators and were published in peer-reviewed journals in English were searched by a Boolean logic search strategy and screened in the databases PubMed, Medline, Embase, and Web of Science. The outcome measures were the biomarkers of oxidative stress in cell lipids in urine and blood, namely F2-isoprostanes, hydrogen peroxide (LOOH, PEROX, or LIPOX), malondialdehyde (MDA), and thiobarbituric acid reactive substances (TBARS). Result: 7 trials were included. A combination program of aerobic exercise (AE), low-intensity resistance training (LIRT), and a placebo intake (Placebo) and a combination program of aerobic exercise, low-intensity resistance training, and antioxidant supplementation (S) had the most and sub-most potential to dampen cellular lipid peroxidation (AE + LIRT + Placebo: 0.31 in Rank 1 and 0.2 in Rank 2; AE + LIRT + S: 0.19 in Rank 1 and 0.20 in Rank 2); A placebo intake (Placebo) and a blank intervention without exercise (NE) had the most and sub-most potential to induce an enhancement of cellular lipid peroxidation (Placebo: 0.51 in Rank 9 and 0.16 in Rank 8; NE: 0.16 in Rank 9 and 0.28 in Rank 8). All included studies had an unclear risk of selecting reporting. There were no high confidence ratings in all the direct and indirect comparisons, 4 comparisons in the direct evidence structure and 7 comparisons in the indirect evidence structure had moderate confidence. Conclusion: A combined protocol consisting of aerobic exercise and low-intensity resistance training is recommended to dampen cellular lipid peroxidation. Extra antioxidant supplementation might be unnecessary if an elderly individual has enough aerobic and resistance exercise. Systematic Review Registration: CRD42022367430.

9.
Front Oncol ; 13: 1085569, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994207

RESUMEN

Introduction: Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer with poor prognosis and resistance to hormone therapy, which has limited therapeutic approaches. Therefore, this study aimed to identify a novel treatment for NEPC and provide evidence of its inhibitory effects. Methods: We performed a high-throughput drug screening and identified fluoxetine, originally an FDA-approved antidepressant, as candidate therapeutic agent for NEPC. We carried out both in vitro and in vivo experiments to demonstrate the inhibitory effects of fluoxetine on NEPC models and its mechanism in detail. Results: Our results demonstrated that fluoxetine effectively curbed the neuroendocrine differentiation and inhibited cell viability by targeting the AKT pathway. Preclinical test in NEPC mice model (PBCre4: Ptenf/f; Trp53f/f; Rb1f/f) showed that fluoxetine effectively prolonged the overall survival and reduced the risk of tumor distant metastases. Discussion: This work repurposed fluoxetine for antitumor application, and supported its clinical development for NEPC therapy, which may provide a promising therapeutic strategy.

10.
Cell Oncol (Dordr) ; 46(5): 1445-1456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37120492

RESUMEN

PURPOSE: Neuroendocrine prostate cancer (NEPC), a highly aggressive subtype of prostate cancer displaying resistance to hormone therapy, presents a poor prognosis and limited therapeutic options. Here, we aimed to find novel medication therapies for NEPC and explore the underlying mechanism. METHODS: A high-throughput drug screening utilizing an FDA-approved drug library was performed and ketotifen, an antihistamine agent, was identified as a potential therapeutic candidate for NEPC. The whole-transcriptome sequencing analysis was conducted to explore mechanism of ketotifen inhibitory in NEPC. Multiple cell biology and biochemistry experiments were performed to confirm the inhibitory effect of ketotifen in vitro. A spontaneous NEPC mice model (PBCre4:Ptenf/f;Trp53f/f;Rb1f/f) was used to reveal the inhibitory effect of ketotifen in vivo. RESULTS: Our in vitro experiments demonstrated that ketotifen effectively suppressed neuroendocrine differentiation, reduced cell viability, and reversed the lineage switch via targeting the IL-6/STAT3 pathway. Our in vivo results showed that ketotifen significantly prolonged overall survival and reduced the risk of distant metastases in NEPC mice model. CONCLUSION: Our findings repurpose ketotifen for antitumor applications and endorse its clinical development for NEPC therapy, offering a novel and promising therapeutic strategy for this formidable cancer subtype.


Asunto(s)
Cetotifen , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Cetotifen/uso terapéutico , Interleucina-6/metabolismo , Reposicionamiento de Medicamentos , Neoplasias de la Próstata/patología , Línea Celular Tumoral , Factor de Transcripción STAT3/metabolismo
11.
Nat Commun ; 14(1): 7794, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016952

RESUMEN

Neuroendocrine prostate cancer is a rapidly progressive and lethal disease characterized by early visceral metastasis, poor prognosis, and limited treatment options. Uncovering the oncogenic mechanisms could lead to the discovery of potential therapeutic avenues. Here, we demonstrate that the RNA-binding protein ELAVL3 is specifically upregulated in neuroendocrine prostate cancer and that overexpression of ELAVL3 alone is sufficient to induce the neuroendocrine phenotype in prostate adenocarcinoma. Mechanistically, ELAVL3 is transcriptionally regulated by MYCN and subsequently binds to and stabilizes MYCN and RICTOR mRNA. Moreover, ELAVL3 is shown to be released in extracellular vesicles and induce neuroendocrine differentiation of adenocarcinoma cells via an intercellular mechanism. Pharmacological inhibition of ELAVL3 with pyrvinium pamoate, an FDA-approved drug, effectively suppresses tumor growth, reduces metastatic risk, and improves survival in neuroendocrine prostate cancer mouse models. Our results identify ELAVL3 as a critical regulator of neuroendocrine differentiation in prostate cancer and propose a drug repurposing strategy for targeted therapies.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Proteína Proto-Oncogénica N-Myc/genética , Retroalimentación , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Fenotipo , Adenocarcinoma/genética , Línea Celular Tumoral , Proteína 3 Similar a ELAV/genética
12.
J Clin Invest ; 133(24)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099497

RESUMEN

Cell lineage plasticity is one of the major causes for the failure of targeted therapies in various cancers. However, the driver and actionable drug targets in promoting cancer cell lineage plasticity are scarcely identified. Here, we found that a G protein-coupled receptor, ADORA2A, is specifically upregulated during neuroendocrine differentiation, a common form of lineage plasticity in prostate cancer and lung cancer following targeted therapies. Activation of the ADORA2A signaling rewires the proline metabolism via an ERK/MYC/PYCR cascade. Increased proline synthesis promotes deacetylases SIRT6/7-mediated deacetylation of histone H3 at lysine 27 (H3K27), and thereby biases a global transcriptional output toward a neuroendocrine lineage profile. Ablation of Adora2a in genetically engineered mouse models inhibits the development and progression of neuroendocrine prostate and lung cancers, and, intriguingly, prevents the adenocarcinoma-to-neuroendocrine phenotypic transition. Importantly, pharmacological blockade of ADORA2A profoundly represses neuroendocrine prostate and lung cancer growth in vivo. Therefore, we believe that ADORA2A can be used as a promising therapeutic target to govern the epigenetic reprogramming in neuroendocrine malignancies.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Próstata , Sirtuinas , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Epigénesis Genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Prolina/metabolismo , Prolina/uso terapéutico , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Sirtuinas/metabolismo
13.
Theranostics ; 12(11): 4965-4979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35836810

RESUMEN

Background: Prostate cancer is usually considered as immune "cold" tumor with poor immunogenic response and low density of tumor-infiltrating immune cells, highlighting the need to explore clinically actionable strategies to sensitize prostate cancer to immunotherapy. In this study, we investigated whether docetaxel-based chemohormonal therapy induces immunologic changes and potentiates checkpoint blockade immunotherapy in prostate cancer. Methods: We performed transcriptome and histopathology analysis to characterize the changes of prostate cancer immune microenvironment before and after docetaxel-based chemohormonal therapy. Furthermore, we investigated the therapeutic benefits and underlying mechanisms of chemohormonal therapy combined with anti-PD1 blockade using cellular experiments and xenograft prostate cancer models. Finally, we performed a retrospective cohort analysis to evaluate the antitumor efficacy of anti-PD1 blockade alone or in combination with docetaxel-based chemotherapy. Results: Histopathology assessments on patient samples confirmed the enrichment of tumor-infiltrating T cells after chemohormonal therapy. Moreover, we found that docetaxel activated the cGAS/STING pathway in prostate cancer, subsequently induced IFN signaling, resulting in lymphocytes infiltration. In a xenograft mouse model, docetaxel-based chemohormonal therapy prompted the intratumoral infiltration of T cells and upregulated the abundance of PD1 and PD-L1, thereby sensitizing mouse tumors to the anti-PD1 blockade. To determine the clinical significance of these results, we retrospectively analyzed a cohort of 30 metastatic castration-resistant prostate cancer patients and found that docetaxel combined with anti-PD1 blockade resulted in better prostate-specific antigen progression-free survival when compared with anti-PD1 blockade alone. Conclusions: Our study demonstrates that docetaxel activates the antitumoral immune response and facilitates T cell infiltration in a cGAS/STING-dependent manner, providing a combination immunotherapy strategy that would improve the clinical benefits of immunotherapy.


Asunto(s)
Inmunoterapia , Neoplasias de la Próstata , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Docetaxel/uso terapéutico , Humanos , Factores Inmunológicos , Inmunoterapia/métodos , Masculino , Ratones , Nucleotidiltransferasas , Neoplasias de la Próstata/tratamiento farmacológico , Estudios Retrospectivos , Microambiente Tumoral
14.
Front Oncol ; 12: 955166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033483

RESUMEN

The androgen receptor (AR) signaling is a key contributor to tumorigenesis and the progression of prostate cancer. A subset of patients may develop neuroendocrine (NE) features, resulting in resistance to androgen deprivation therapy and poor prognosis. In this study, we combined immunostaining and bulk and single-cell transcriptome analyses to better characterize the status of AR in prostate cancer with neuroendocrine differentiation. The exploration of online datasets indicated the existence of ARHIGH/NEHIGH prostate cancer and revealed that these double-high cases are majorly present in castration-resistant prostate cancer with a less neuroendocrine-transdifferentiated state. We then reviewed 8,194 prostate cancer cases with available immunohistochemistry reports and found 2.3% cases (n = 189) that showed at least one of the NE markers (chromogranin A, synaptophysin, and neural cell adhesion molecule 1) being positive in at least 5% of epithelial cells. Within these 189 cases, we observed that 81.0% cases (n = 153) showed AR positive and 19.0% (n = 36) showed AR negative. Patients with AR loss tumors demonstrated a correlation with adverse clinical stages, indicating a trade-off between AR and advanced disease in neuroendocrine differentiation. Using multiplex immunofluorescence staining, we observed the co-localization of AR and NE markers in prostate cancer cells. In addition, data mining of single-cell transcriptome further confirmed the existence of ARHIGH/NEHIGH prostate cancer cells in castration-resistant samples and suggested that AR still exerts its androgen response and anti-apoptotic effect in these double-high cells. Thus, our study provides a better understanding of AR signaling in the cellular plasticity of prostate cancer with neuroendocrine differentiation and allows new insights into the therapeutic development.

15.
Front Oncol ; 11: 683793, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395251

RESUMEN

Positron emission tomography/computed tomography (PET/CT) is widely used in prostate cancer to evaluate the localized tumor burden and detect symptomatic metastatic lesions early. 18F-FDG is the most used tracer for oncologic imaging, but it has limitations in detecting early-stage prostate cancer. 68Ga-PSMA is a new tracer that has high specificity and sensibility in detecting local and metastatic tumors. But with the progression of prostate cancer, the enhancement of glucose metabolism in progressive prostate cancer provides a chance for 18F-FDG. This review focuses on PET/CT in the detection and prognosis of prostate cancer, summarizing the literature on 18F-FDG and 68Ga-PSMA in prostate cancer and highlighting that 18F-FDG has advantages in detecting local recurrence, visceral and lymph node metastases compared to 68Ga-PSMA in partial progressive prostate cancer and castration-resistant prostate cancer patients. We emphasize 18F-FDG PET/CT can compensate for the weakness of 68Ga-PSMA PET/CT in progressive prostate cancer.

16.
Nat Commun ; 12(1): 1812, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753739

RESUMEN

Human hexokinase 2 is an essential regulator of glycolysis that couples metabolic and proliferative activities in cancer cells. The binding of hexokinase 2 to the outer membrane of mitochondria is critical for its oncogenic activity. However, the regulation of hexokinase 2 binding to mitochondria remains unclear. Here, we report that SUMOylation regulates the binding of hexokinase 2 to mitochondria. We find that hexokinase 2 can be SUMOylated at K315 and K492. SUMO-specific protease SENP1 mediates the de-SUMOylation of hexokinase 2. SUMO-defective hexokinase 2 preferably binds to mitochondria and enhances both glucose consumption and lactate production and decreases mitochondrial respiration in parallel. This metabolic reprogramming supports prostate cancer cell proliferation and protects cells from chemotherapy-induced cell apoptosis. Moreover, we demonstrate an inverse relationship between SENP1-hexokinase 2 axis and chemotherapy response in prostate cancer samples. Our data provide evidence for a previously uncovered posttranslational modification of hexokinase 2 in cancer cells, suggesting a potentially actionable strategy for preventing chemotherapy resistance in prostate cancer.


Asunto(s)
Carcinogénesis/metabolismo , Hexoquinasa/metabolismo , Mitocondrias/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Docetaxel/farmacología , Hexoquinasa/genética , Humanos , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Unión Proteica , Sumoilación , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
17.
Cancers (Basel) ; 12(6)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471299

RESUMEN

Thermal magnetic resonance (ThermalMR) accommodates radio frequency (RF)-induced temperature modulation, thermometry, anatomic and functional imaging, and (nano)molecular probing in an integrated RF applicator. This study examines the feasibility of ThermalMR for the controlled release of a model therapeutics from thermoresponsive nanogels using a 7.0-tesla whole-body MR scanner en route to local drug-delivery-based anticancer treatments. The capacity of ThermalMR is demonstrated in a model system involving the release of fluorescein-labeled bovine serum albumin (BSA-FITC, a model therapeutic) from nanometer-scale polymeric networks. These networks contain thermoresponsive polymers that bestow environmental responsiveness to physiologically relevant changes in temperature. The release profile obtained for the reference data derived from a water bath setup used for temperature stimulation is in accordance with the release kinetics deduced from the ThermalMR setup. In conclusion, ThermalMR adds a thermal intervention dimension to an MRI device and provides an ideal testbed for the study of the temperature-induced release of drugs, magnetic resonance (MR) probes, and other agents from thermoresponsive carriers. Integrating diagnostic imaging, temperature intervention, and temperature response control, ThermalMR is conceptually appealing for the study of the role of temperature in biology and disease and for the pursuit of personalized therapeutic drug delivery approaches for better patient care.

18.
Sci Rep ; 9(1): 19723, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873155

RESUMEN

Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive imaging technique sensitive to tissue water movement. By enabling a discrimination between tissue properties without the need of contrast agent administration, DWI is invaluable for probing tissue microstructure in kidney diseases. DWI studies commonly make use of single-shot Echo-Planar Imaging (ss-EPI) techniques that are prone to suffering from geometric distortion. The goal of the present study was to develop a robust DWI technique tailored for preclinical magnetic resonance imaging (MRI) studies that is free of distortion and sensitive to detect microstructural changes. Since fast spin-echo imaging techniques are less susceptible to B0 inhomogeneity related image distortions, we introduced a diffusion sensitization to a split-echo Rapid Acquisition with Relaxation Enhancement (RARE) technique for high field preclinical DWI at 9.4 T. Validation studies in standard liquids provided diffusion coefficients consistent with reported values from the literature. Split-echo RARE outperformed conventional ss-EPI, with ss-EPI showing a 3.5-times larger border displacement (2.60 vs. 0.75) and a 60% higher intra-subject variability (cortex = 74%, outer medulla = 62% and inner medulla = 44%). The anatomical integrity provided by the split-echo RARE DWI technique is an essential component of parametric imaging on the way towards robust renal tissue characterization, especially during kidney disease.

19.
Radiat Oncol ; 10: 201, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26391138

RESUMEN

BACKGROUND: Glioblastoma multiforme is the most common and most aggressive malign brain tumor. The 5-year survival rate after tumor resection and adjuvant chemoradiation is only 10 %, with almost all recurrences occurring in the initially treated site. Attempts to improve local control using a higher radiation dose were not successful so that alternative additive treatments are urgently needed. Given the strong rationale for hyperthermia as part of a multimodal treatment for patients with glioblastoma, non-invasive radio frequency (RF) hyperthermia might significantly improve treatment results. METHODS: A non-invasive applicator was constructed utilizing the magnetic resonance (MR) spin excitation frequency for controlled RF hyperthermia and MR imaging in an integrated system, which we refer to as thermal MR. Applicator designs at RF frequencies 300 MHz, 500 MHz and 1GHz were investigated and examined for absolute applicable thermal dose and temperature hotspot size. Electromagnetic field (EMF) and temperature simulations were performed in human voxel models. RF heating experiments were conducted at 300 MHz and 500 MHz to characterize the applicator performance and validate the simulations. RESULTS: The feasibility of thermal MR was demonstrated at 7.0 T. The temperature could be increased by ~11 °C in 3 min in the center of a head sized phantom. Modification of the RF phases allowed steering of a temperature hotspot to a deliberately selected location. RF heating was monitored using the integrated system for MR thermometry and high spatial resolution MRI. EMF and thermal simulations demonstrated that local RF hyperthermia using the integrated system is feasible to reach a maximum temperature in the center of the human brain of 46.8 °C after 3 min of RF heating while surface temperatures stayed below 41 °C. Using higher RF frequencies reduces the size of the temperature hotspot significantly. CONCLUSION: The opportunities and capabilities of thermal magnetic resonance for RF hyperthermia interventions of intracranial lesions are intriguing. Employing such systems as an alternative additive treatment for glioblastoma multiforme might be able to improve local control by "fighting fire with fire". Interventions are not limited to the human brain and might include temperature driven targeted drug and MR contrast agent delivery and help to understand temperature dependent bio- and physiological processes in-vivo.


Asunto(s)
Hipertermia Inducida/métodos , Espectroscopía de Resonancia Magnética/métodos , Modelos Teóricos , Campos Electromagnéticos , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/uso terapéutico , Física , Terapia por Radiofrecuencia
20.
PLoS One ; 8(8): e72841, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23991157

RESUMEN

Inflammatory disorders of the central nervous system such as multiple sclerosis and acute disseminated encephalomyelitis involve an invasion of immune cells that ultimately leads to white matter demyelination, neurodegeneration and development of neurological symptoms. A clinical diagnosis is often made when neurodegenerative processes are already ongoing. In an attempt to seek early indicators of disease, we studied the temporal and spatial distribution of brain modifications in experimental autoimmune encephalomyelitis (EAE). In a thorough magnetic resonance imaging study performed with EAE mice, we observed significant enlargement of the ventricles prior to disease clinical manifestation and an increase in free water content within the cerebrospinal fluid as demonstrated by changes in T2 relaxation times. The increase in ventricle size was seen in the lateral, third and fourth ventricles. In some EAE mice the ventricle size started returning to normal values during disease remission. In parallel to this macroscopic phenomenon, we studied the temporal evolution of microscopic lesions commonly observed in the cerebellum also starting prior to disease onset. Our data suggest that changes in ventricle size during the early stages of brain inflammation could be an early indicator of the events preceding neurological disease and warrant further exploration in preclinical and clinical studies.


Asunto(s)
Ventrículos Cerebrales/anomalías , Encefalomielitis Autoinmune Experimental/patología , Animales , Encefalomielitis Autoinmune Experimental/diagnóstico , Femenino , Imagen por Resonancia Magnética , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA