Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(12): e2206166, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36861951

RESUMEN

Understanding the dynamical evolution from metal ions to single atoms is of great importance to the rational development of synthesis strategies for single atom catalysts (SACs) against metal sintering during pyrolysis. Herein, an in situ observation is disclosed that the formation of SACs is ascertained as a two-step process. There is initially metal sintering into nanoparticles (NPs) (500-600 °C), followed by the conversion of NPs into metal single atoms (Fe, Co, Ni, Cu SAs) at higher temperature (700-800 °C). Theoretical calculations together with control experiments based on Cu unveil that the ion-to-NP conversion can arise from the carbon reduction, and NP-to-SA conversion being steered by generating more thermodynamically stable Cu-N4 configuration instead of Cu NPs. Based on the evidenced mechanism, a two-step pyrolysis strategy to access Cu SACs is developed, which exhibits excellent ORR performance.

2.
ACS Appl Mater Interfaces ; 14(8): 10337-10343, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35179878

RESUMEN

Exploring highly active and cost-effective catalysts for styrene epoxidation is of great significance, but it remains challenging to simultaneously achieve excellent conversion and selectivity toward styrene oxide. In this work, the structures and performance of Co, Fe, and Cu single-atom catalysts (SACs) in styrene epoxidation with tert-butyl hydroperoxide (TBHP) are predicted using density functional theory (DFT) calculations. The results reveal that the Co-N structure prefers that of styrene oxide over Fe-N and Cu-N structures. This predicted result is verified via catalytic evaluations, where the Co SACs displayed significantly higher styrene oxide selectivity than Fe and Cu SACs. Moreover, the activity of Co SAC can be further improved by the construction of unsaturated vacancy-defect cobalt single sites. As a result, excellent performance with styrene conversion of 99.9% and styrene oxide selectivity of 71% is achieved after a reaction time of 8 h on the optimal Co SAC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA