Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 48(8): 2034-2037, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37058635

RESUMEN

There is an increasing demand for high-precision gas absorption spectroscopy in basic research and industrial applications, such as gas tracking and leak warning. In this Letter, a novel, to the best of our knowledge, high-precision and real-time gas detection method is proposed. A femtosecond optical frequency comb is used as the light source, and a broadening pulse containing a range of oscillation frequencies is formed after passing through a dispersive element and a Mach-Zehnder interferometer. Four absorption lines of H13C14N gas cells are measured at five different concentrations within a single pulse period. A single scan detection time of only 5 ns is obtained along with a coherence averaging accuracy of 0.0055 nm. High-precision and ultrafast detection of the gas absorption spectrum is accomplished while overcoming complexities related to the acquisition system and light source that are encountered in existing methods.

2.
Opt Express ; 30(19): 35029-35040, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242504

RESUMEN

We demonstrate an arbitrary distance measurement method by chirped pulse spectrally interferometry (CPSI) using femtosecond optical frequency comb (OFC). In this paper, the chirped fiber Bragg grating (CFBG) is used to investigate the mapping relationship between displacement and the center frequency of the chirped spectral interferogram. We overcome the direction ambiguity of dispersive interferometry (DPI) ranging and expand the range of distance measurement to 18 cm. Besides, we achieve a full range of dead-zone free ranging by introducing a variable optical delay line (VODL). And through principles simulation and experiment, it is demonstrated that the measurement accuracy is 12 µm in comparison with an incremental He-Ne laser interferometer and the minimum Allen deviation is 52 nm at an average time of 1.76 ms. Similarly, in the experiment with long-distance of ∼30m, the accuracy reaches 20 µm, and 2.51 µm repeatability is achieved under harsh environment.

3.
Sensors (Basel) ; 22(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35891083

RESUMEN

Since the dispersive interferometry (DPI) based on optical frequency combs (OFCs) was proposed, it has been widely used in absolute distance measurements with long-distance and high precision. However, it has a serious problem for the traditional DPI based on the mode-locked OFC. The error of measurements caused by using the fast Fourier transform (FFT) algorithm to process signals cannot be overcome, which is due to the non-uniform sampling intervals in the frequency domain of spectrometers. Therefore, in this paper, we propose a new mathematical model with a simple form of OFC to simulate and analyze various properties of the OFC and the principle of DPI. Moreover, we carry out an experimental verification, in which we adopt the Lomb-Scargle algorithm to improve the accuracy of measurements of DPI. The results show that the Lomb-Scargle algorithm can effectively reduce the error caused by the resolution, and the error of absolute distance measurement is less than 12 µm in the distance of 70 m based on the mode-locked OFC.

4.
Opt Express ; 29(18): 28582-28596, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34614985

RESUMEN

The basic principle of frequency-modulated continuous-wave lidars is to measure the velocity of a moving object through the Doppler frequency shift phenomenon. However, the vibration generated by the moving object will cause the spectrum to broaden and the precision and repeatability of speed measurement to decrease. In this paper, we propose a speed measurement method based on H13C14N gas cell absorption peak splitting the sweep signal of a large bandwidth triangular wave modulated frequency laser. This method obtains the speed of a continuously moving target by re-splicing an accurately-split frequency sweep signal, which effectively solves the problem of simultaneous processing of excessive amounts of data when measuring the speed of a continuously moving target. At the same time, the H13C14N gas cell absorbs the spectra of specific wavelengths, which reduces the phase delay of the beat signal corresponding to the up- and down-scanning, thus reducing the signal spectrum broadening caused by frequency deviation, and improving the speed measurement resolution and range effectively. The experimental results show that for speeds of up to 30mm/s, the mean error was less than 23µm/s and the mean standard deviation was less than 61µm/s.

5.
Opt Lett ; 46(5): 1025-1028, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649648

RESUMEN

Traditional frequency modulated continuous wave (FMCW) LIDAR ranging is based on heterodyne detection, calculating unknown distance by extracting the frequency of the interference signal, while the main error source is frequency modulation (FM) nonlinearity. In this paper, a ranging system based on a microresonator soliton comb is demonstrated to correct the nonlinearity by sampling the ranging signals at equal frequency intervals, producing a ranging error lower than 20 µm, while at the range of 2 m. Advantages of fast data acquisition, light computation requirements, and a simple optical path, without long optical fiber, give this method a high practical value in precision manufacturing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA