Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Amino Acids ; 56(1): 17, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393495

RESUMEN

The development of the goat mammary gland is mainly under the control of ovarian hormones particularly estrogen and progesterone (P4). Amino acids play an essential role in mammary gland development and milk production, and sodium-coupled neutral amino acid transporter 2 (SNAT2) was reported to be expressed in the mammary gland of rats and bovine mammary epithelial cells, which may affect the synthesis of milk proteins or mammary cell proliferation by mediating prolactin, 17ß-estradiol (E2) or methionine function. However, whether SNAT2 mediates the regulatory effects of E2 and P4 on the development of the ruminant mammary gland is still unclear. In this study, we show that E2 and P4 could increase the proliferation of goat mammary epithelial cells (GMECs) and regulate SNAT2 mRNA and protein expression in a dose-dependent manner. Further investigation revealed that SNAT2 is abundantly expressed in the mammary gland during late pregnancy and early lactation, while knockdown and overexpression of SNAT2 in GMECs could inhibit or enhance E2- and P4-induced cell proliferation as well as mammalian target of rapamycin (mTOR) signaling. We also found that the accelerated proliferation induced by SNAT2 overexpression in GMECs was suppressed by the mTOR signaling pathway inhibitor rapamycin. This indicates that the regulation of GMECs proliferation mediated by SNAT2 in response to E2 and P4 is dependent on the mTOR signaling pathway. Finally, we found that the total content of the amino acids in GMECs changed after knocking-down and overexpressing SNAT2. In summary, the results demonstrate that the regulatory effects of E2 and P4 on GMECs proliferation may be mediated by the SNAT2-transported amino acid pathway. These results may offer a novel nutritional target for improving the development of the ruminant mammary gland and milk production.


Asunto(s)
Estrógenos , Cabras , Progesterona , Animales , Femenino , Embarazo , Aminoácidos/metabolismo , Proliferación Celular , Células Epiteliales/metabolismo , Estrógenos/metabolismo , Cabras/genética , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , Progesterona/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
2.
J Sep Sci ; 47(11): e2300924, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38819784

RESUMEN

Mas-related G protein-coupled receptor X2 (MrgprX2) is acknowledged as a mast cell-specific receptor, playing a crucial role in orchestrating anaphylactoid responses through mast cell degranulation. It holds promise as a target for regulating allergic and inflammatory diseases mediated by mast cells. Polygonum cuspidatum (PC) has shown notable anti-anaphylactoid effects, while its pharmacologically active components remain unclear. In this study, we successfully utilized MrgprX2 high-expressing cell membrane chromatography (CMC), in conjunction with liquid chromatography-mass spectrometry (LC-MS), to identify active anti-anaphylactoid components in PC. Our study pinpointed polydatin, resveratrol, and emodin-8-O-ß-d-glucoside as potential anti-anaphylactoid compounds in PC. Their anti-anaphylactoid activities were evaluated through ß-aminohexosidase and histamine release assays, demonstrating a concentration-dependent inhibition for both ß-aminohexosidase and histamine release. This approach, integrating MrgprX2 high-expression CMC with LC-MS, proves effective in screening potential anti-anaphylactoid ingredients in natural herbal medicines. The findings from this study illuminated the anti-anaphylactoid properties of specific components in PC and provided an efficient method for the drug development of natural products.


Asunto(s)
Fallopia japonica , Receptores Acoplados a Proteínas G , Receptores de Neuropéptido , Receptores Acoplados a Proteínas G/metabolismo , Fallopia japonica/química , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/antagonistas & inhibidores , Humanos , Espectrometría de Masas , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/química , Cromatografía Liquida , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glucósidos/farmacología , Glucósidos/química , Glucósidos/análisis , Estructura Molecular , Cromatografía Líquida con Espectrometría de Masas
3.
Sensors (Basel) ; 24(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38475025

RESUMEN

A simple microwave photonic, reconfigurable, instantaneous frequency measurement system based on low-voltage thin-film lithium niobate on an insulator phase modulator is put forward and experimentally demonstrated. Changing the wavelength of the optical carrier can realize the flexibility of the frequency measurement range and accuracy, showing that during the ranges of 0-10 GHz, 3-15 GHz, and 12-18 GHz, the average measurement errors are 26.9 MHz, 44.57 MHz, and 13.6 MHz, respectively, thanks to the stacked integrated learning models. Moreover, this system is still able to respond to microwave signals of as low as -30 dBm with the frequency measurement error of 62.06 MHz, as that low half-wave voltage for the phase modulator effectively improves the sensitivity of the system. The general-purpose, miniaturized, reconfigurable, instantaneous frequency measurement modules have unlimited potential in areas such as radar detection and early warning reception.

4.
Small ; 19(4): e2205735, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36437051

RESUMEN

The construction of hollow metallic microspheres with rationally designed building blocks of the metal shell is a promising way to achieve low density and functionality control, but the microengineering of the metallic structures on a micrometer spherical surface is a great challenge. In the present work, a novel and simple calcination-induced aggregation strategy is developed to realize the distribution status and microstructure control of Co-Cu bimetal building blocks assembled on a hollow glass microsphere support, and thus a series of low-density (0.58 g cm-3 ) dual shell composite hollow microspheres are constructed with gradient in electromagnetic property depending on the calcination temperature (CT). The optimized microwave shielding performance can be achieved at a CT of 500 °C, while further increasing CT to 700 °C leads to an interesting conversion from microwave shielding to absorption with an optimized effective absorption bandwidth of 4.64 GHz at a low matching thickness of 1.33 mm. The mechanism underlying the CT-dependent metallic shell structure variation and further the decisive effect of the shell structure on the microwave response behavior are proposed based on a series of contrast experiments.

5.
Opt Lett ; 48(9): 2465-2467, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126299

RESUMEN

Difficulty in etching lithium niobate (LN) results in a relatively high propagation loss, which necessitates sophisticated processes to fabricate high-quality factor (Q) microresonators. Here, we fabricate a multimode microring resonator with an intrinsic Q of 6 × 106, which exhibits a propagation loss 50 times lower than that of a single-mode LN microring fabricated under the same process. Notably, the excitation of higher-order modes in the multimode microring is effectively suppressed by utilizing the Euler bend. The highly regular transmission spectrum of the resonator demonstrates a free spectral range (FSR) of 56 GHz. Based on this microresonator, we implement a bandpass microwave photonic filter with an ultra-narrow 3 dB bandwidth of 47.5 MHz and a large tuning range of 2-26.5 GHz. It can be anticipated that the combination of existing advanced etching techniques with this work will drive the propagation loss of a LN waveguide closer to the material absorption loss, significantly facilitating the optimization of performance in applications requiring ultrahigh-Q LN microresonators, such as frequency combs, frequency conversion, electro-optic modulation, and quantum photonics.

6.
Stress ; 26(1): 2252938, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37632459

RESUMEN

As endocrine hormones, glucocorticoids (GCs) play a pivotal role in numerous physiological processes, including mammary growth and lactation, circulatory metabolism, and responses to external stimuli. In the dairy industry, milk production from cows or goats is important for newborns and economic benefits. However, the milk yields from ruminant animals are always affected by the extent of mammary development, mammary disease, stress, or changes in metabolism. Thus, it is necessary to clarify how GCs changes in ruminants affect ruminant mammary gland function and mammary disease. This review summarizes the findings identifying that GCs modulate mammary gland development before lactation, but the stress-induced excessive release of GCs leads to milk production loss. In addition, the manner of GCs release may change under different concentrations of metabolites or during mastitis or inflammatory challenge. Nevertheless, exogenous GCs administration to animals may alleviate the clinical symptoms of mastitis. This review demonstrates that GCs offer a fascinating contribution to both physiologic and pathogenic conditions of the mammary gland in ruminant animals. Characterizing and understanding these changes or functions of endogenous and exogenous GCs in animals will be crucial for developing more endocrine regulators and therapies for improving milk production in ruminants.


Asunto(s)
Glucocorticoides , Mastitis , Femenino , Humanos , Bovinos , Animales , Leche , Estrés Psicológico , Rumiantes
7.
Anal Bioanal Chem ; 415(7): 1371-1383, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36651973

RESUMEN

In this study, a novel cell membrane chromatography (CMC) model was developed to investigate cluster of differentiation 147 (CD147) targeted anti-tumor drug leads for specific screening and ligand-receptor interaction analysis by SNAP-tagged CD147 fusion protein conjugation and polystyrene microspheres (PS) modification. Traditional Chinese medicines (TCMs) are widely used in the treatment of cancer. CD147 plays important roles in tumor progression and acts as an attractive target for therapeutic intervention; therapeutic drugs for CD147-related cancers are limited to date. Thus, a screening method for active components in TCMs is crucial for the further research and development of CD147 antagonists. However, improvement is still needed to perform specific and accurate drug lead screening using the CMC-based method. Recently, our group developed a covalently immobilized receptor-SNAP-tag/CMC model using silica gel as carrier. Besides the carboxyl group on multi-step modified silica particles, the amino group of benzyl-guanine (BG, substrate of SNAP-tag) also possesses reactivity towards the carboxyl group on available carboxyl-modified PS. Herein, we used PS as carrier and an extended SNAP-tag with CD147 receptor to construct the PS-BG-CD147/CMC model for active compound investigation coupled with HPLC/MS and applied this coupled PS-BG-CD147/CMC-HPLC/MS two-dimensional system to drug lead screening from Nelumbinis Plumula extract (NPE) sample. In addition, to comprehensively verify the pharmacological effects of screened ingredients, a cell proliferation inhibition assay was performed, and the interaction between the ingredients and CD147 was studied by the frontal analysis method. This study developed a high-throughput PS-based CMC screening platform, which could be widely applied and utilized in chromatographic separation and drug lead discovery.


Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/química , Poliestirenos/análisis , Microesferas , Cromatografía Líquida de Alta Presión/métodos , Membrana Celular/química
8.
Sensors (Basel) ; 23(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37112146

RESUMEN

This work presents a silicon-based capacitively transduced width extensional mode (WEM) MEMS rectangular plate resonator with quality factor (Q) of over 10,000 at a frequency of greater than 1 GHz. The Q value, determined by various loss mechanisms, was analyzed and quantified via numerical calculation and simulation. The energy loss of high order WEMs is dominated by anchor loss and phonon-phonon interaction dissipation (PPID). High-order resonators possess high effective stiffness, resulting in large motional impedance. To suppress anchor loss and reduce motional impedance, a novel combined tether was designed and comprehensively optimized. The resonators were batch fabricated based on a reliable and simple silicon-on-insulator (SOI)-based fabrication process. The combined tether experimentally contributes to low anchor loss and motional impedance. Especially in the 4th WEM, the resonator with a resonance frequency of 1.1 GHz and a Q of 10,920 was demonstrated, corresponding to the promising f × Q product of 1.2 × 1013. By using combined tether, the motional impedance decreases by 33% and 20% in 3rd and 4th modes, respectively. The WEM resonator proposed in this work has potential application for high-frequency wireless communication systems.

9.
Anal Bioanal Chem ; 414(19): 5741-5753, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35697810

RESUMEN

Pseudo-allergic reactions (PARs) are IgE-independent hypersensitivity reactions. Mas-related G protein-coupled receptor-X2 (MrgX2) was proved the key receptor of PAR. The anti-pseudo-allergic compound discovery based on MrgX2 was of great value. Cell membrane chromatography (CMC) based on MrgX2 provides a convenient and effective tool in anti-pseudo-allergic compound screening and discovery, and further improvements of this method are still needed. In this work, SNAP-tag was introduced at C-terminal of Mas-related G protein-coupled receptor (MrgX2-SNAP-tag), and an MrgX2-SNAP-tag/CMC model was then conducted using CMC technique. Comparative experiments showed that the new model not only satisfied the good selectivity and specificity of screening but also exhibited more stable and longer life span than traditional MrgX2/CMC model. By coupling with HPLC-MS, two compounds were screened out from Arnebiae Radix and identified as shikonin and acetylshikonin. Nonlinear chromatography was performed to study the interactions between two screened compounds and MrgX2, and binding constant (KA) of shikonin and acetylshikonin with MrgX2 were 2075.67 ± 0.34 M-1 and 32201.36 ± 0.35 M-1, respectively. Furthermore, ß-hexosaminidase and histamine release assay in vitro demonstrated that shikonin (1-5 µM) and acetylshikonin (2.5-10 µM) could both antagonize C48/80-induced allergic reaction. In conclusion, the MrgX2-SNAP-tag/CMC could be a reliable model for screening pseudo-allergy-related components from complex systems.


Asunto(s)
Antialérgicos , Receptores de Neuropéptido , Antialérgicos/análisis , Antialérgicos/metabolismo , Antialérgicos/farmacología , Membrana Celular/metabolismo , Cromatografía Liquida , Espectrometría de Masas , Mastocitos/química , Mastocitos/metabolismo , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/análisis , Receptores de Neuropéptido/química , Receptores de Neuropéptido/metabolismo
10.
J Sep Sci ; 45(14): 2498-2507, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35561141

RESUMEN

Cell membrane chromatography is an effective method for screening bioactive components acting on specific receptors in complex systems, which maintains the biological activity of the membrane receptors and improves screening efficiency. However, traditional cell membrane chromatography suffers from poor stability, resulting in a limited life span and low reproducibility, greatly limiting the application of this method. To address this problem, cyanuric chloride-decorated silica gel was used for the covalent immobilization of the cell membranes. Cyanuric chloride reacts with amino groups on the cell membranes and membrane receptors to form covalent bonds. In this way, the cell membranes are not easy to fall off. The column life of the cyanuric chloride-decorated epidermal growth factor receptor/cell membrane chromatography column was extended to more than 8 days, whereas the column life of the normal cell membrane chromatography column dropped sharply in the first 3 days. A cyanuric chloride-decorated epidermal growth factor receptor/cell membrane chromatography online HPLC-IT-TOF-MSn system was applied for screening drug leads from Trifolium pratense L. One potential drug lead, formononetin, which acts on the epidermal growth factor receptor, was screened. Our strategy of covalently immobilizing cell membrane receptors also improved the stability of cell membrane chromatography.


Asunto(s)
Medicamentos Herbarios Chinos , Receptores ErbB , Membrana Celular/química , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Receptores ErbB/metabolismo , Reproducibilidad de los Resultados
11.
J Sep Sci ; 45(2): 456-467, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34729910

RESUMEN

Chloroquine and hydroxychloroquine have been studied since the early clinical treatment of SARS-CoV-2 outbreak. Considering these two chiral drugs are currently in use as the racemate, high-expression angiotensin-converting enzyme 2 cell membrane chromatography was established for investigating the differences of two paired enantiomers binding to angiotensin-converting enzyme 2 receptor. Molecular docking assay and detection of SARS-CoV-2 spike pseudotyped virus entry into angiotensin-converting enzyme 2-HEK293T cells were also conducted for further investigation. Results showed that each single enantiomer could bind well to angiotensin-converting enzyme 2, but there were differences between the paired enantiomers and corresponding racemate in frontal analysis. R-Chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine. Moreover, each single enantiomer was proved effective compared with the control group; compared with S-chloroquine or the racemate, R-chloroquine showed better inhibitory effects at the same concentration. As for hydroxychloroquine, R-hydroxychloroquine showed better inhibitory effects than S-hydroxychloroquine, but it slightly worse than the racemate. In conclusion, R-chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability and inhibitory effects compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine (racemate), while the effect of preventing SARS-CoV-2 pseudovirus from entering cells was weaker than R-hydroxychloroquine/hydroxychloroquine (racemate).


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/efectos de los fármacos , Cloroquina/química , Cloroquina/farmacología , Cromatografía Líquida de Alta Presión/métodos , Hidroxicloroquina/química , Hidroxicloroquina/farmacología , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Antivirales/química , Antivirales/farmacología , COVID-19/virología , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/virología , Células HEK293 , Humanos , Técnicas In Vitro , Simulación del Acoplamiento Molecular , Receptores Virales/antagonistas & inhibidores , Receptores Virales/química , Receptores Virales/efectos de los fármacos , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Solventes , Estereoisomerismo , Pseudotipado Viral , Internalización del Virus , Tratamiento Farmacológico de COVID-19
12.
Appl Opt ; 61(23): 6795-6803, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36255758

RESUMEN

This work presents a simple microwave photonic downconversion channelizer based on multi-wavelength laser sources. The design of two laser diode (LD) arrays enables signal multiplexing and simultaneous multichannel downconversion processing, which provide stable, relatively flat, and strong multi-frequency combs. A proof-of-concept experiment was taken, showing that 14.375-17.75 GHz broadband radio frequency (RF) signals were successfully downconverted to the same intermediate frequency (IF) and were sliced into four subchannels with 875 MHz bandwidth showing excellent image rejection and channel uniformity, which agrees with the simulation results. The spurious free dynamic range (SFDR) of the proposed RF channelizer is 100dBHz2/3, the image rejection is over 28 dB, and the frequency measurement error is less than ±6MHz. Replacing optical filters with electrical filters, the proposed simple optoelectronic hybrid reconfigurable microwave photonic channelizer system acquits stable performance and high maturity and meets the application requirements, behaving with stupendous potential in fields such as radar, satellite communication, electronic warfare, and others.

13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(2): 157-160, 2022 Feb 10.
Artículo en Zh | MEDLINE | ID: mdl-35076911

RESUMEN

OBJECTIVE: To investigate the effect and possible mechanism of BDNF-AS on renal tubular epithelial cell injury induced by high glucose. METHODS: Human renal tubular epithelial cells HK-2 were cultured in vitro and transfected with BDNF-AS small interfering RNA or miR-145-5p mimic, or co-transfected with BDNF-AS small interfering RNA and miR-145-5p inhibitor, respectively. The cells were then intervened with 30 mmol/L glucose for 24 hours. The expression of BDNF-AS and miR-145-5p were detected by RT-qPCR. Cell proliferation was detected by CCK-8, and apoptosis was detected by flow cytometry. The expression of Bcl-2 and Bax proteins were detected by Western blotting, and the levels of IL-1ß and IL-6 in cell culture supernatant were detected by enzyme-linked immunosorbent assay. Dual luciferase reporter gene experiment was used to verify the regulatory relationship of BDNF-AS with miR-145-5p. RESULTS: High glucose promoted the expression of BDNF-AS in HK-2 cells (P<0.05), but inhibited that of miR-145-5p (P<0.05). Interfering with BDNF-AS or overexpression of miR-145-5p decreased the inhibition rate, apoptosis rate and expression of Bax protein, IL-1ß and IL-6 of HK-2 cells induced by high glucose (P<0.05), but promoted the expression of Bcl-2 protein (P<0.05). Interfering with miR-145-5p reversed the effect of interfering with BDNF-AS on the proliferation, apoptosis rate and the expression of IL-1ß and IL-6 of HK-2 cells induced by high glucose. BDNF-AS could target and down-regulate miR-145-5p. CONCLUSION: Interfering with BDNF-AS may promote the proliferation of renal tubular epithelial cells induced by high glucose and inhibit cell apoptosis and the expression of inflammatory factor by down-regulating miR-145-5p.


Asunto(s)
MicroARNs , Apoptosis , Factor Neurotrófico Derivado del Encéfalo/genética , Proliferación Celular , Células Epiteliales , Glucosa , Humanos , MicroARNs/genética
14.
Anal Chem ; 93(34): 11719-11728, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34415741

RESUMEN

Membrane protein immobilization is particularly significant in in vitro drug screening and determining drug-receptor interactions. However, there are still some problems in the immobilization of membrane proteins with controllable direction and high conformational stability, activity, and specificity. Cell membrane chromatography (CMC) retains the complete biological structure of membrane proteins. However, conventional CMC has the limitation of poor stability, which results in its limited life span and low reproducibility. To overcome this limitation, we propose a method for the specific covalent immobilization of membrane proteins in cell membranes. We used the SNAP-tag as an immobilization tag fused to the epidermal growth factor receptor (EGFR), and Cys145 located at the active site of the SNAP-tag reacted with the benzyl group of O6-benzylguanine (BG). The SNAP-tagged EGFR was expressed in HEK293 cells. We captured the SNAP-tagged EGFR from the cell membrane suspension onto a BG-derivative-modified silica gel. Our immobilization strategy improved the life span and specificity of CMC and minimized loss of activity and nonspecific attachment of proteins. Next, a SNAP-tagged EGFR/CMC online HPLC-IT-TOF-MS system was established to screen EGFR antagonists from Epimedii folium. Icariin, magnoflorine, epimedin B, and epimedin C were retained in this model, and pharmacological assays revealed that magnoflorine could inhibit cancer cell growth by targeting the EGFR. This EGFR immobilization method may open up possibilities for the immobilization of other membrane proteins and has the potential to serve as a useful platform for screening receptor-binding leads from natural medicinal herbs.


Asunto(s)
Receptores ErbB , Tecnología , Membrana Celular , Receptores ErbB/genética , Células HEK293 , Humanos , Reproducibilidad de los Resultados
15.
Anal Bioanal Chem ; 413(7): 1917-1927, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33506335

RESUMEN

A novel stability-enhanced graphene quantum dot (GQD)-decorated epidermal growth factor receptor (EGFR) cell membrane chromatography was constructed to study the potential application of GQDs in bioaffinity chromatography, and to screen active components acting on EGFR from traditional Chinese medicine (TCM). The carboxyl groups on the surface of GQDs reacted with the amino groups of the amino-silica gel (SiO2-NH2) to form a covalent bond, thereby preparing the GQD-decorated silica gel (SiO2-GQDs). The EGFR cell membrane was further immobilized on the SiO2-GQDs through the same covalent binding method to obtain the GQD-decorated cell membrane stationary phase (SiO2-GQDs-CMSP). In this way, the cell membrane was firmly immobilized on the decorated silica carrier. The life span and stability of the GQD-decorated cell membrane chromatographic (SiO2-GQDs-CMC) column were both enhanced, and the optimal immobilization conditions of the EGFR cell membrane were also determined. This model was then verified by establishing a SiO2-GQDs-CMC online liquid chromatography-ion trap-time-of-flight (LC-IT-TOF) system to screen possible active components in Peucedanum praeruptorum Dunn. As a result, praeruptorin B (Pra-B) was screened out, and its inhibitory effect against EGFR cell growth was evaluated by the cell counting kit-8 (CCK-8) assay. Molecular docking assay was also conducted to further estimate the interaction between Pra-B and EGFR. Overall, this research indicated that GQDs may be a promising nanomaterial to be used in prolonging the life span of the CMC column, and Pra-B could be a potential EGFR inhibitor so as to treat cancer.


Asunto(s)
Apiaceae/metabolismo , Cromatografía/métodos , Receptores ErbB/análisis , Puntos Cuánticos , Antineoplásicos/análisis , Membrana Celular/metabolismo , Química Farmacéutica/métodos , Diseño de Fármacos , Gefitinib/análisis , Grafito/química , Células HEK293 , Humanos , Medicina Tradicional China , Microscopía Electrónica de Rastreo , Simulación del Acoplamiento Molecular , Neoplasias/metabolismo , Dióxido de Silicio , Espectroscopía Infrarroja por Transformada de Fourier
16.
Anal Bioanal Chem ; 413(11): 2995-3004, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33608752

RESUMEN

Traditional Chinese medicines played an important role in the treatment of COVID-19 in 2020. Ephedra sinica, one of the major constituent herbs of multi-component herbal formula, has been widely used to treat COVID-19 in China. However, its active components are still unclear. The objectives of this study are to screen and evaluate active components from the traditional Chinese medicine Ephedra sinica for the treatment of COVID-19. In our study, we established an ACE2/CMC bioaffinity chromatography model, and then developed an ACE2/CMC-HPLC-IT-TOF-MS system for the active compounds screening and identification from Ephedra sinica extract. We performed molecular docking and surface plasmon resonance (SPR) assays to assess the binding characteristics (binding mode and KD value). We used CCK-8 staining to assess the toxicity of screened compounds, and also used SARS-CoV-2 pseudovirus to observe the viropexis effect of screened compounds in ACE2h cells. In this current work, one fraction was fished out, separated and identified as ephedrine (EP), pseudoephedrine (PEP), and methylephedrine (MEP). Binding assays showed that the three compounds could bind with ACE2 in a special way to some amino acid residues, similar to the way SARS-CoV-2 bound with ACE2. Additionally, the three compounds, especially EP, can inhibit the entrance of SARS-CoV-2 spike pseudovirus into ACE2h cells because they can reduce the entrance ratio of pseudovirus in the pseudovirus model. Overall, the ACE2/CMC-HPLC-IT-TOF-MS system was established and verified to be suitable for ACE2-targeted bioactive compound screening. EP, PEP, and MEP with ACE2-binding features were screened out from Ephedra sinica, and acted as blockers inhibiting SARS-CoV-2 spike pseudovirus entering ACE2h cells.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/farmacología , Ephedra sinica , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Antivirales/aislamiento & purificación , COVID-19/metabolismo , China , Cromatografía Líquida de Alta Presión , Descubrimiento de Drogas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Ephedra sinica/química , Efedrina/análogos & derivados , Efedrina/aislamiento & purificación , Efedrina/farmacología , Células HEK293 , Humanos , Espectrometría de Masas , Simulación del Acoplamiento Molecular , SARS-CoV-2/fisiología , Internalización del Virus/efectos de los fármacos
17.
J Sep Sci ; 44(7): 1421-1429, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33491300

RESUMEN

Adverse drug reactions of traditional Chinese medicine injection mainly manifested as pseudo-allergic reactions. In the present study, ginsenoside Rd, Ro, and Rg3 were identified as pseudo-allergic components in Shengmai injection by a high-expression Mas-related G protein-coupled receptor X2 cell membrane chromatography coupled online with high-performance liquid chromatography and mass spectrometry. Their pseudo-allergic activities were evaluated by in vitro and in vivo assay. The three compounds were further found to induce pseudo-allergic reaction through Mas-related G protein-coupled receptor X2. Therefore, we concluded that ginsenoside Rd, Ro and Rg3 may be potential allergens that cause pseudo-allergic reactions. This study might be helpful for the safe use of Shengmai injection.


Asunto(s)
Alérgenos/análisis , Medicamentos Herbarios Chinos/química , Receptores Acoplados a Proteínas G/biosíntesis , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Combinación de Medicamentos , Medicamentos Herbarios Chinos/administración & dosificación , Humanos , Espectrometría de Masas , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL
18.
BMC Anesthesiol ; 21(1): 176, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162330

RESUMEN

BACKGROUND: There are many factors affecting the success rate of awake orotracheal intubation via fiberoptic bronchoscope. We performed this study was to investigate the effects of head positions on awake Fiberoptic bronchoscope oral intubation. METHODS: Seventy-five adult patients, received general anaesthesia were included in this study. After written informed consent, these patients were undergoing awake orotracheal intubation via fiberoptic-bronchoscope and according to the head position, the patients were randomized allocated to neutral position group (NP group), sniffing position group (SP group) or extension position group (EP group). After sedation the patients were intubated by an experienced anesthesiologist. The time to view the vocal cords, the percentage of glottic opening scores (POGO), the time to insert the tracheal tube into trachea and the visual analog scale (VAS) scores for ease experienced of passing the tracheal tube through glottis, the hemodynamic changes and the adverse events after surgery were recorded. RESULTS: The time to view the vocal cords was significantly shorter and the POGO scores was significantly higher in the EP group compared with the other two groups (P < 0.05); The SpO2 in the EP group was higher than NP group at before intubation and higher than SP group and NP group at immediate after intubation (P < 0.05); The time to insert the tracheal tube into trachea, the VAS scores for passing the tracheal tube through glottis, the coughing scores had no significant differences among groups (P > 0.05). There were also no significant differences regard to the incidence of postoperative complications, mean arterial pressure and heart rate among the groups (P > 0.05). CONCLUSIONS: The head at extension position had a best view of glottic opening than neutral position or sniffing position during awake Fiberoptic bronchoscope oral intubation, so extension position was recommended as the starting head position for awake Fiberoptic bronchoscope oral intubation. TRIAL REGISTRATION: Clinical Trials.gov. no. NCT02792855. Registered at https://register.clinicaltrials.gov on 23 september 2017.


Asunto(s)
Broncoscopía/métodos , Intubación Intratraqueal/métodos , Posicionamiento del Paciente , Adulto , Anestesia General/métodos , Broncoscopios , Femenino , Tecnología de Fibra Óptica/métodos , Humanos , Masculino , Persona de Mediana Edad , Vigilia
19.
J Sep Sci ; 43(13): 2571-2578, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32281296

RESUMEN

Mas-related G protein-coupled receptor X2 was a mast cell-specific receptor mediating anaphylactoid reactions by activating mast cells degranulation, and it was also identified as a target for modulating mast cell-mediated anaphylactoid and inflammatory diseases. The anti-anaphylactoid drugs used clinically disturb the partial effect of partial mediators released by mast cells. The small molecule of Mas-related G protein-coupled receptor X2 specific antagonists may provide therapeutic action for the anaphylactoid and inflammatory diseases in the early stage. In this study, the Mas-related G protein-coupled receptor X2 high expression cell membrane chromatography was coupled online with liquid chromatography and mass spectrometry and successfully used to screen anti-anaphylactoid components from Magnolia biondii Pamp. Fargesin and pinoresinol dimethyl ether were identified as potential anti-anaphylactoid components. Bioactivity of these two components were investigated by ß hexosaminidase and histamine release assays on mast cells, and it was found that these two components could inhibit ß hexosaminidase and histamine release in a concentration-dependent manner. This Mas-related G protein-coupled receptor X2 high expression cell membrane chromatography coupled online with liquid chromatography and mass spectrometry system could be applied for screening potential anti-anaphylactoid components from natural medicinal herbs. This study also provided a powerful system for drug discovery in natural medicinal herbs.


Asunto(s)
Anafilaxia/tratamiento farmacológico , Membrana Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Magnolia/química , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Extractos Vegetales/farmacología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores de Neuropéptido/antagonistas & inhibidores , Anafilaxia/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Cromatografía Liquida , Medicamentos Herbarios Chinos/química , Células HEK293 , Humanos , Espectrometría de Masas , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Medicina Tradicional China , Proteínas del Tejido Nervioso/metabolismo , Extractos Vegetales/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo
20.
BMC Anesthesiol ; 20(1): 125, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32450803

RESUMEN

BACKGROUND: The anesthesia of patients with large mediastinal mass is at high-risk. Avoidance of general anesthesia in these patients is the safest option, if this is unavoidable, maintenance of spontaneous ventilation is the next safest technique. In these types of patients, it is not applicable to use double-lumen tube (DLT) to achieve one-lung ventilation (OLV) because the DLT has a larger diameter and is more rigid than single-lumen tube (SLT), so the mass may rupture and bleed during intubation. Even using a bronchial blocker, a small size of SLT is required for once the trachea collapses the SLT can pass through the narrowest part of trachea. However, it is difficult to control the fiberoptic bronchoscopy (FOB) and the bronchial blocker simultaneously within the lumen of a small size SLT with traditional intubation methods. CASE PRESENTATION: The current study presented a 66 years old female patient with a large mediastinal mass that presented with difficulty breathing when lying flat. In this case, we combined use of dexmedetomidine and remifentanil to preserve the patient's spontaneous ventilation during intubation and achieved one-lung ventilation with extraluminal use of Uniblocker. CONCLUSIONS: Extraluminal use of Uniblocker and maintenance of spontaneous ventilation during intubation may be an alternative to traditional methods of lung isolation in such patients with a large mediastinal mass.


Asunto(s)
Intubación Intratraqueal/métodos , Neoplasias del Mediastino/cirugía , Ventilación Unipulmonar/instrumentación , Anciano , Femenino , Humanos , Intubación Intratraqueal/instrumentación , Ventilación Unipulmonar/métodos , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA