Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 246, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421403

RESUMEN

Grifola frodosa polysaccharides, especially ß-D-glucans, possess significant anti-tumor, antioxidant and immunostimulatory activities. However, the synthesis mechanism remains to be elucidated. A newly discovered glycosyltransferase UGT88A1 was found to extend glucan chains in vitro. However, the role of UGT88A1 in the growth and polysaccharide synthesis of G. frondosa in vivo remains unclear. In this study, the overexpression of UGT88A1 improved mycelial growth, increased polysaccharide production, and decreased cell wall pressure sensitivity. Biomass and polysaccharide production decreased in the silenced strain, and the pressure sensitivity of the cell wall increased. Overexpression and silencing of UGT88A1 both affected the monosaccharide composition and surface morphology of G. frondosa polysaccharides and influenced the antioxidant activity of polysaccharides from different strains. The messenger RNA expression of glucan synthase (GLS), UTP-glucose-1-phosphate uridylyltransferase (UGP), and UDP-xylose-4-epimerase (UXE) related to polysaccharide synthesis, and genes related to cell wall integrity increased in the overexpression strain. Overall, our study indicates that UGT88A1 plays an important role in the growth, stress, and polysaccharide synthesis of G. frondosa, providing a reference for exploring the pathway of polysaccharide synthesis and metabolic regulation. KEY POINTS: •UGT88A1 plays an important role in the growth, stress response, and polysaccharide synthesis in G. frondosa. •UGT88A1 affected the monosaccharide composition, surface morphology and antioxidant activity of G. frondosa polysaccharides. •UGT88A1 regulated the mRNA expression of genes related to polysaccharide synthesis and cell wall integrity.


Asunto(s)
Grifola , Piridinas , Urea/análogos & derivados , Antioxidantes , Glucanos , Glicosiltransferasas/genética , Monosacáridos
2.
Small ; 19(48): e2303591, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37568253

RESUMEN

An asymmetric wound dressing acts as a skin-like structure serves as a protective barrier between a wound and its surroundings. It allows for the absorption of tissue fluids and the release of active substances at the wound site, thus speeding up the healing process. However, the production of such wound dressings requires the acquisition of specialized tools, expensive polymers, and solvents that contain harmful byproducts. In this study, an asymmetric bacterial cellulose (ABC) wound dressing using starch as a porogen has been developed. By incorporating silver-metal organic frameworks (Ag-MOF) and curcumin into the ABC membrane, the wound dressing gains antioxidant, reactive oxygen species (ROS) scavenging, and anti-bacterial activities. Compared to BC-based wound dressings, this dressing promotes efficient dissolution and controlled release of curcumin and silver ions. In a full-thickness skin defect model, wound dressing not only inhibits the growth of bacteria on infected wounds but also regulates the release of curcumin to reduce inflammation and promote the production of epithelium, blood vessels, and collagen. Consequently, this dressing provides superior wound treatment compared to BC-based dressing.


Asunto(s)
Curcumina , Plata , Plata/química , Curcumina/farmacología , Curcumina/química , Antibacterianos/farmacología , Antibacterianos/química , Cicatrización de Heridas , Celulosa/química , Antiinflamatorios/farmacología
3.
Appl Microbiol Biotechnol ; 107(15): 4873-4885, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37354265

RESUMEN

Efficient FAD/FADH2 regeneration is vital for enzymatic biocatalysis and metabolic pathway optimization. Here, we constructed an efficient and simple FAD/FADH2 regeneration system through a combination of L-amino acid deaminase (L-AAD) and halogenase (CombiAADHa), which was applied for catalyzing the conversion of an L-amino acid to halide and an α-keto acid. For cell-free biotransformation, the optimal activity ratio of L-AAD and halogenase was set between 1:50 and 1:60. Within 6 h, 170 mg/L of 7-chloro-tryptophan (7-Cl-Trp) and 193 mg/L of indole pyruvic acid (IPA) were synthesized in the selected mono-amino acid system. For whole-cell biotransformation, 7-Cl-Trp and IPA synthesis was enhanced by 15% (from 96 to 110 mg/L) and 12% (from 115 to 129 mg/L), respectively, through expression fine-tuning and the strengthening of FAD/FADH2 supply. Finally, ultrasound treatment was applied to improve membrane permeability and adjust the activity ratio, resulting in 1.6-and 1.4-fold higher 7-Cl-Trp and IPA yields. The products were then purified. This system could also be applied to the synthesis of other halides and α-keto acids. KEY POINTS: • In this study, a whole cell FAD/FADH2 regeneration system co-expressing l-AAD and halogenase was constructed • This study found that the activity and ratio of enzyme and the concentration of cofactors had a significant effect on the catalytic process for the efficient co-production of 7-chlorotryptophan and indole pyruvate.


Asunto(s)
Ácido Pirúvico , Triptófano , Triptófano/metabolismo , Aminoácidos/metabolismo , Indoles/metabolismo , Cetoácidos/metabolismo , Regeneración
4.
J Mol Struct ; 1284: 135409, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993878

RESUMEN

The outbreak of novel coronavirus disease 2019 (COVID-19), caused by the novel coronavirus (SARS-CoV-2), has had a significant impact on human health and the economic development. SARS-CoV-2 3CL protease (3CLpro) is highly conserved and plays a key role in mediating the transcription of virus replication. It is an ideal target for the design and screening of anti-coronavirus drugs. In this work, seven ß-nitrostyrene derivatives were synthesized by Henry reaction and ß-dehydration reaction, and their inhibitory effects on SARS-CoV-2 3CL protease were identified by enzyme activity inhibition assay in vitro. Among them, 4-nitro-ß-nitrostyrene (compound a) showed the lowest IC50 values of 0.7297 µM. To investigate the key groups that determine the activity of ß-nitrostyrene derivatives and their interaction mode with the receptor, the molecular docking using the CDOCKER protocol in Discovery Studio 2016 was performed. The results showed that the hydrogen bonds between ß-NO2 and receptor GLY-143 and the π-π stacking between the aryl ring of the ligand and the imidazole ring of receptor HIS-41 significantly contributed to the ligand activity. Furthermore, the ligand-receptor absolute binding Gibbs free energies were calculated using the Binding Affinity Tool (BAT.py) to verify its correlation with the activity of ß-nitrostyrene 3CLpro inhibitors as a scoring function. The higher correlation(r2=0.6) indicates that the absolute binding Gibbs free energy based on molecular dynamics can be used to predict the activity of new ß-nitrostyrene 3CLpro inhibitors. These results provide valuable insights for the functional group-based design, structure optimization and the discovery of high accuracy activity prediction means of anti-COVID-19 lead compounds.

5.
J Sci Food Agric ; 103(13): 6429-6439, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37209219

RESUMEN

BACKGROUND: The natural fermentation of multispecies microbial communities is responsible for unique flavors of winery regions of the eastern foothills of the Ningxia Helan Mountains in China. However, the participation of different microorganisms in the metabolic network for the development of important flavor substances is not clearly defined. Microbial population and diversity on different fermentation phases of Ningxia wine were analyzed by metagenomic sequencing approach. RESULTS: Gas chromatography-mass spectrometry and ion chromatography were used to identify flavor components, and 13 esters, 13 alcohols, nine aldehydes and seven ketones were detected in volatile substances with odor activity values > 1, and eight organic acids were detected as important flavor components in young wine. Thus, 52 238 predicted protein-coding genes from 24 genera were identified in the Kyoto Encyclopedia of Genes and Genomes level 2 pathways of global and overview maps, and the genes were primarily involved in amino acid metabolism and carbohydrate metabolism. Major microbial genera (Saccharomyces, Tatumella, Hanseniaspora, Lactobacillus, and Lachancea) were closely related to self-characteristic compound metabolism and further contributed to wine flavor. CONCLUSION: This study clarifies the different metabolic roles of microorganisms in flavor formation during Ningxia wine spontaneous fermentation. Saccharomyces, dominant fungi involved in glycolysis and pyruvate metabolism, produces not only ethanol but also two important precursors, pyruvate and acetyl-CoA, which are necessary for the tricarboxylic acid cycle, fatty acid metabolism, amino acid metabolism, and flavor formation. Lactobacillus and Lachancea, dominant bacteria involved in lactic acid metabolism. Tatumella, dominant bacteria involved in amino acid metabolism, fatty acid metabolism, and acetic acid metabolism to produce esters in the Shizuishan City region samples. These findings provide insights into the use of local functional strains to generate unique flavor formation, as well as improved stability and quality, in wine production. © 2023 Society of Chemical Industry.

6.
Appl Microbiol Biotechnol ; 106(21): 7099-7112, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36184690

RESUMEN

Komagataeibacter xylinus is an aerobic strain that produces bacterial cellulose (BC). Oxygen levels play a critical role in regulating BC synthesis in K. xylinus, and an increase in oxygen tension generally means a decrease in BC production. Fumarate nitrate reduction protein (FNR) and aerobic respiration control protein A (ArcA) are hypoxia-inducible factors, which can signal whether oxygen is present in the environment. In this study, FNR and ArcA were used to enhance the efficiency of oxygen signaling in K. xylinus, and globally regulate the transcription of the genome to cope with hypoxic conditions, with the goal of improving growth and BC production. FNR and ArcA were individually overexpressed in K. xylinus, and the engineered strains were cultivated under different oxygen tensions to explore how their overexpression affects cellular metabolism and regulation. Although FNR overexpression did not improve BC production, ArcA overexpression increased BC production by 24.0% and 37.5% as compared to the control under oxygen tensions of 15% and 40%, respectively. Transcriptome analysis showed that FNR and ArcA overexpression changed the way K. xylinus coped with oxygen tension changes, and that both FNR and ArcA overexpression enhanced the BC synthesis pathway. The results of this study provide a new perspective on the effect of oxygen signaling on growth and BC production in K. xylinus and suggest a promising strategy for enhancing BC production through metabolic engineering. KEY POINTS: • K. xylinus BC production increased after overexpression of ArcA • The young's modulus is enhanced by the ArcA overexpression • ArcA and FNR overexpression changed how cells coped with changes in oxygen tension.


Asunto(s)
Celulosa , Gluconacetobacter xylinus , Humanos , Celulosa/metabolismo , Nitratos/metabolismo , Gluconacetobacter xylinus/genética , Gluconacetobacter xylinus/metabolismo , Oxígeno/metabolismo , Fumaratos/metabolismo , Hipoxia
7.
Biotechnol Bioeng ; 118(12): 4699-4707, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34491579

RESUMEN

Glycolate is a bulk chemical with wide applications in the textile, food processing, and pharmaceutical industries. Glycolate can be produced from glucose via the glycolysis and glyoxylate shunt pathways, followed by reduction to glycolate. However, two problems limit the productivity and yield of glycolate when using glucose as the sole carbon source. The first is a cofactor imbalance in the production of glycolate from glucose via the glycolysis pathway, since NADPH is required for glycolate production, while glycolysis generates NADH. To rectify this imbalance, the NADP+ -dependent glyceraldehyde 3-phosphate dehydrogenase GapC from Clostridium acetobutylicum was introduced to generate NADPH instead of NADH in the oxidation of glyceraldehyde 3-phosphate during glycolysis. The soluble transhydrogenase SthA was further eliminated to conserve NADPH by blocking its conversion into NADH. The second problem is an unfavorable carbon flux distribution between the tricarboxylic acid cycle and the glyoxylate shunt. To solve this problem, isocitrate dehydrogenase (ICDH) was eliminated to increase the carbon flux of glyoxylate and thereby improve the glycolate titer. After engineering through the integration of gapC, combined with the inactivation of ICDH, SthA, and by-product pathways, as well as the upregulation of the two key enzymes isocitrate lyase (encoding by aceA), and glyoxylate reductase (encoding by ycdW), the glycolate titer increased to 5.3 g/L with a yield of 1.89 mol/mol glucose. Moreover, an optimized fed-batch fermentation reached a titer of 41 g/L with a yield of 1.87 mol/mol glucose after 60 h.


Asunto(s)
Escherichia coli , Glicolatos , Ingeniería Metabólica/métodos , Proteínas Bacterianas/genética , Clostridium acetobutylicum/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Glucosa/metabolismo , Glicolatos/análisis , Glicolatos/metabolismo , Redes y Vías Metabólicas/genética
8.
Appl Microbiol Biotechnol ; 105(24): 9285-9295, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34778911

RESUMEN

Exposure to ionizing radiation (IR) tends to cause serious health concerns. Thus, radioprotective agents are vital for the population exposed to radiation. As microorganisms have the advantages of fast reproduction and no geographical restrictions, direct microbe-based and environmental induction compounds are thriving radioprotectants resources. Oxidative system and oxidase in Acetobacter pasteurianus are unique and intriguing, the radioprotective effect of the cell-free extract from A. pasteurianus (APE) and 60Coγ-treated extract (IRE) were comparatively investigated in the present study. The survival rate of A. pasteurianus with IRE addition was 149.1% in H2O2 damage test, while that with APE was only 10.4%. The viability of 60Coγ-treated AML-12 cells was increased by 18.8% with IRE addition, yet APE showed no significant radioprotective effect. Moreover, in 60Coγ-treated mice, IRE could significantly protect the white blood cell, improve the liver index, and attenuate the injuries of immune organs in mice. Administration of IRE significantly raised the activities of superoxide dismutase (SOD) and reduced the products of lipid peroxidation. These results clarified that gavage with APE and IRE presented notable antioxidant and radioprotective efficacy. A. pasteurianus showed appealing potential to be novel radioprotective bioagents and 60Coγ treatment on microbe could be a new method for the development of better radioprotectant. KEY POINTS: • 60Coγ induction could improve the radioprotective effect of APE. • IRE protected white blood cell in mice under IR. • IRE products have broad application prospects in radioprotection based on microbes.


Asunto(s)
Acetobacter , Protectores contra Radiación , Animales , Peróxido de Hidrógeno , Ratones , Radiación Ionizante , Protectores contra Radiación/farmacología
9.
Appl Microbiol Biotechnol ; 105(20): 7801-7811, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34581846

RESUMEN

Quorum sensing is a mechanism that facilitates cell-to-cell communication. Through signal molecular density for signal recognition, which leads to the regulation of some physiological and biochemical functions. Gluconacetobacter xylinus CGMCC 2955, which produces bacterial cellulose (BC), synthesizes the LuxR protein belonging to the LuxI/LuxR type QS system. Here, a luxR overexpression vector was transformed into G. xylinus CGMCC 2955. The overexpression of luxR increased the yield of BC by 15.6% after 16 days static culture and reduced the cell density by 15.5% after 120-h-agitated culture. The glucose was used up by G. xylinus-pMV24-luxR at 72-h-agitated fermentation, which 12 h earlier than the wild-type (WT). The total N-acylhomoserine lactones (AHL) content of the luxR-overexpressing strain and the WT strain attained 1367.9 ± 57.86 mg/L and 842.9 ± 54.22 mg/L, respectively. The C12-HSL and C14-HSL contents of G. xylinus-pMV24-luxR were 202 ± 21.66 mg/L and 409.6 ± 0.91 mg/L, which were significantly lower than that of WT. In contrast, C6-HSL showed opposite results. The difference of AHL content proved that overexpression of luxR improved the binding of AHL and showed preference for some specific AHL. The metabolic results demonstrated that upon glucose exhaustion, the consumption of gluconic acid was promoted by luxR overexpression, and the content of D- ( +)-trehalose, an antiretrograde metabolite, increased significantly. KEY POINTS: • The overexpression of luxR increased the yield of bacterial cellulose • The content of signal molecules was significantly different • Differential metabolites were involved in multiple metabolic pathways.


Asunto(s)
Gluconacetobacter xylinus , Percepción de Quorum , Acil-Butirolactonas , Proteínas Bacterianas/genética , Celulosa , Gluconacetobacter xylinus/genética , Transactivadores/genética
10.
Curr Microbiol ; 78(7): 2640-2647, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33991200

RESUMEN

In this study, the strain Streptomyces diastatochromogenes 6#-7, which efficiently synthesizes ε-Poly-L-lysine, was studied and the effects of 18 amino acids and overexpression of dapA gene on the fermentation efficiency of ε-PL by S. diastatochromogenes were investigated. It was shown that L-proline, L-lysine, L-isoleucine, and L-threonine could promote the production of ε-PL. Moreover, the overexpression of the dihydrodipicolinate synthase gene (dapA) helped improve the fermentation performance of S. diastatochromogenes. The maximum ε-PL yield of the overexpressing strain (S. diastatochromogenes 12#-2) increased by 17.5% compared with the original strain in 500 mL shake flask. When the fermentation was conducted in a 5-L fermenter, the fermentation duration was extended by 48 h, and ε-PL yield reached 30.54 g/L, which was a 19.8% increase compared to the original strain. The results of this study offered a promising approach to augment the production of ε-PL from Streptomyces, thus paving the way to reduce the cost of product ε-PL and enhance the fermentation efficiency of ε-PL production.


Asunto(s)
Polilisina , Streptomyces , Aminoácidos , Fermentación , Streptomyces/genética
11.
Biotechnol Bioeng ; 117(7): 2165-2176, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32270472

RESUMEN

Diverse applications of bacterial cellulose (BC) have different requirements in terms of its structural characteristics. culturing Komagataeibacter xylinus CGMCC 2955, BC structure changes with alterations in oxygen tension. Here, the K. xylinus CGMCC 2955 transcriptome was analyzed under different oxygen tensions. Transcriptome and genome analysis indicated that BC structure is related to the rate of BC synthesis and cell growth, and galU is an essential gene that controls the carbon metabolic flux between the BC synthesis pathway and the pentose phosphate (PP) pathway. The CRISPR interference (CRISPRi) system was utilized in K. xylinus CGMCC 2955 to control the expression levels of galU. By overexpressing galU and interfering with different sites of galU sequences using CRISPRi, we obtained strains with varying expression levels of galU (3.20-3014.84%). By testing the characteristics of BC, we found that the porosity of BC (range: 62.99-90.66%) was negative with galU expression levels. However, the crystallinity of BC (range: 56.25-85.99%) was positive with galU expression levels; galU expression levels in engineered strains were lower than those in the control strains. Herein, we propose a new method for regulating the structure of BC to provide a theoretical basis for its application in different fields.


Asunto(s)
Proteínas Bacterianas/genética , Celulosa/genética , Gluconacetobacter xylinus/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , Sistemas CRISPR-Cas , Celulosa/química , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Regulación hacia Abajo , Transcriptoma
12.
J Phycol ; 56(3): 687-698, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31975508

RESUMEN

Dunaliella salina is well known for its ability to accumulate large amounts of ß-carotene. Myo-inositol (MI) enhances the biomass production of D. salina, but the underlying mechanisms were unclear. The present study showed that the concentration of exogenous MI decreased gradually and reached a constant level at the 4th day of cultivation. MI enhanced the contents of total colored carotenoids and the activity of photosystem II. Metabolic profiles were significantly changed after the addition of exogenous MI, as revealed by multivariate statistical analysis. The metabolites could be categorized into four groups based on the relative levels in different samples. Exogenous MI increased the levels of most detected sugars, amino acids, and total saturated and unsaturated fatty acids. Based on the physiological and metabolic analyses, a hypothetical growth-promoting model that MI promotes the growth of D. salina TG by increasing the levels of key metabolites and possibly enhancing photosynthesis, was proposed. This study provides valuable information for understanding the growth-promoting mechanisms of MI in D. salina from the metabolic perspective.


Asunto(s)
Chlorophyceae , Chlorophyta , Carotenoides , Inositol , beta Caroteno
13.
Appl Microbiol Biotechnol ; 103(5): 1989-2006, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30637497

RESUMEN

The bacterial infections have always a serious problem to public health. Scientists are developing new antibacterial materials to overcome this problem. Polysaccharides are promising biopolymers due to their diverse biological functions, low toxicity, and high biodegradability. Chitin and chitosan have antibacterial properties due to their cationic nature, while cellulose/bacterial cellulose does not possess any antibacterial activity. Moreover, the insolubility of chitin in common solvents, the poor solubility of chitosan in water, and the low mechanical properties of chitosan have restricted their biomedical applications. In order to solve these problems, chemical modifications such as quaternization, carboxymethylation, cationization, or surface modification of these polymers with different antimicrobial agents, including metal and metal oxide nanoparticles, are carried out to obtain new materials with improved physiochemical and biological properties. This mini review describes the recent progress in such derivatives and composites with potential antibacterial applications.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Celulosa/farmacología , Quitina/farmacología , Quitosano/farmacología , Descubrimiento de Drogas/métodos , Celulosa/química , Quitina/química , Quitosano/química , Humanos , Nanopartículas del Metal/química , Metales/química
14.
Molecules ; 24(15)2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344938

RESUMEN

Many Gram-negative bacteria can regulate gene expression in a cell density-dependent manner via quorum-sensing systems using N-acyl-homoserine lactones (AHLs), which are typical quorum-sensing signaling molecules, and thus modulate physiological characteristics. N-acyl-homoserine lactones are small chemical molecules produced at low concentrations by bacteria and are, therefore, difficult to detect. Here, a biosensor system method and liquid chromatography-tandem mass spectrometry were combined to detect and assay AHL production. As demonstrated by liquid chromatography-tandem mass spectrometry, Gluconacetobacter xylinus CGMCC No. 2955, a Gram-negative acetic acid-producing bacterium and a typical bacterial cellulose (BC) biosynthesis strain, produces six different AHLs, including N-acetyl-homoserine lactone, N-butanoyl-homoserine lactone, N-hexanoyl-homoserine lactone, N-3-oxo-decanoyl-homoserine lactone, N-dodecanoyl-homoserine lactone, and N-tetradecanoyl-homoserine lactone. Gluconacetobacter sp. strain SX-1, another Gram-negative acetic acid-producing bacterium, which can synthesize BC, produces seven different AHLs including N-acetyl-homoserine lactone, N-butanoyl-homoserine lactone, N-hexanoyl-homoserine lactone, N-3-oxo-octanoyl-homoserine lactone, N-decanoyl-homoserine lactone, N-dodecanoyl-homoserine lactone, and N-tetradecanoyl-homoserine lactone. These results lay the foundation for investigating the relationship between BC biosynthesis and quorum-sensing systems.


Asunto(s)
4-Butirolactona/análogos & derivados , Cromatografía Liquida , Gluconacetobacter/química , Espectrometría de Masas en Tándem , 4-Butirolactona/análisis , 4-Butirolactona/química , Proteínas Bacterianas/biosíntesis , Técnicas Biosensibles , Celulosa/biosíntesis , Cromatografía Liquida/métodos , Gluconacetobacter/fisiología , Percepción de Quorum , Espectrometría de Masas en Tándem/métodos
15.
Mol Biol Rep ; 45(6): 1995-2006, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30269247

RESUMEN

Nostoc flagelliforme is a pioneer organism in the desert and highly resistant to ultraviolet B (UV-B) radiation, while the involved adaptive mechanism has not been fully explored yet. To elucidate the responsive mechanism, two doses of UV-B radiation (low: 1 W/m2 and high: 5 W/m2) were irradiated for 6 h and 48 h, respectively, and their effects on global metabolism in N. flagelliforme were comprehensively investigated. In this study, we used iTRAQ-based proteomic approach to explore the proteomes of N. flagelliforme, and 151, 172, 124 and 148 differentially expressed proteins were identified under low and high UV-B doses for 6 h and 48 h, respectively. Functional classification analysis showed these proteins were mainly involved in photosynthesis, amino acid metabolism, antioxidant activity and carbohydrate metabolism. Further analysis revealed that UV-B imposed restrictions on primary metabolism including photosynthesis, Calvin cycle, and amino acid metabolism, and cells started defense mechanism through repair of DNA and protein damage, increasing antioxidant activity, and accumulating extracellular polysaccharides to minimize the damage. Moreover, high UV-B dose imposed more severe restrictions and activated stronger defense mechanism compared with low dose. The results would improve the understanding of molecular mechanisms of UV-B-stress adaption in N. flagelliforme.


Asunto(s)
Nostoc/metabolismo , Nostoc/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Adaptación Biológica/genética , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Metabolismo de los Hidratos de Carbono , Fotosíntesis , Proteoma/metabolismo , Proteómica/métodos
16.
Appl Microbiol Biotechnol ; 102(3): 1155-1165, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29199354

RESUMEN

Oxygen plays a key role during bacterial cellulose (BC) biosynthesis by Gluconacetobacter xylinus. In this study, the Vitreoscilla hemoglobin (VHb)-encoding gene vgb, which has been widely applied to improve cell survival during hypoxia, was heterologously expressed in G. xylinus via the pBla-VHb-122 plasmid. G. xylinus and G. xylinus-vgb + were statically cultured under hypoxic (10 and 15% oxygen tension in the gaseous phase), atmospheric (21%), and oxygen-enriched conditions (40 and 80%) to investigate the effect of oxygen on cell growth and BC production. Irrespective of vgb expression, we found that cell density increased with oxygen tension (10-80%) during the exponential growth phase but plateaued to the same value in the stationary phase. In contrast, BC production was found to significantly increase at lower oxygen tensions. In addition, we found that BC production at oxygen tensions of 10 and 15% was 26.5 and 58.6% higher, respectively, in G. xylinus-vgb + than that in G. xylinus. The maximum BC yield and glucose conversion rate, of 4.3 g/L and 184.7 mg/g, respectively, were observed in G. xylinus-vgb + at an oxygen tension of 15%. Finally, BC characterization suggested that hypoxic conditions enhance BC's mass density, Young's modulus, and thermostability, with G. xylinus-vgb + synthesizing softer BC than G. xylinus under hypoxia as a result of a decreased Young's modulus. These results will facilitate the use of static culture for the production of BC.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosa/biosíntesis , Gluconacetobacter xylinus/metabolismo , Hemoproteínas/metabolismo , Oxígeno/metabolismo , Hemoglobinas Truncadas/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Metabolismo de los Hidratos de Carbono , Módulo de Elasticidad , Regulación Bacteriana de la Expresión Génica , Gluconacetobacter xylinus/genética , Glucosa/metabolismo , Hemoproteínas/genética , Hemoglobinas Truncadas/genética , Vitreoscilla/genética
17.
Appl Microbiol Biotechnol ; 102(16): 7113-7121, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29876603

RESUMEN

Metabolomics has been a potential tool for strain improvement through analyzing metabolite changes in the context of different conditions. However, the availability of a universal metabolite profiling analysis is still a big challenge. In this study, we presented an optimized liquid chromatography-tandem mass spectrometry-based metabolomics methodology for Corynebacterium glutamicum, an important industrial workhorse. It was found that quenching the cellular metabolism with 5-fold volume of - 20 °C 40% methanol was highly recommended due to its lower cell damage rate and higher intracellular metabolite recovery rate. For extracting intracellular metabolites, ethanol/water (3:1, v/v) at 100 °C combined with acidic acetonitrile/water (1:1, v/v, with 0.1% formic acid) at - 20 °C achieved the unbiased metabolite profiling of C. glutamicum. The established methodology was then applied to investigate the intracellular metabolite differences between C. glutamicum ATCC 13032 and an mscCG-deleted mutant under biotin limitation condition. It was observed that in the presence of the functional L-glutamate exporter MscCG, biotin limitation led to accumulation of intracellular 2-oxoglutarate but not L-glutamate. Deletion of mscCG severely inhibited L-glutamate excretion and resulted in a dramatical increase of intracellular L-glutamate, which in turn affected the metabolite profile. The optimized metabolomics methodology holds promise for promoting studies on metabolic mechanism of C. glutamicum.


Asunto(s)
Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/metabolismo , Metabolómica/métodos , Transporte Biológico , Biotina/metabolismo , Corynebacterium glutamicum/genética , Ácido Glutámico/metabolismo , Mutación , Espectrometría de Masas en Tándem/métodos
18.
Wei Sheng Wu Xue Bao ; 56(6): 1034-43, 2016 Jun 04.
Artículo en Zh | MEDLINE | ID: mdl-29727559

RESUMEN

Objective: The purpose of this study was to isolate novel strains from the soil nearby meat processing factories to produce collagenase. After the yield of collagenase from the strain improved, the collagenase was purified and used for hydrolyzing collagen. Methods: The strain was identified based on morphological features, physiological and biochemical characteristics and 16S rRNA gene phylogenetic tree analysis. The yield of collagenase was increased by optimizing the fermentation condition, and the collagenase isolated from the fermentation supernatant of the strain was finally purified with strong anion exchange resins. Results: The collagenase-producing strain was identified as Bacillus cereus. The optimized fermentation conditions of the strain were: 2.0% glucose as optimum carbon source, 1.5% tryptone as optimum nitrogen source, 0.005% of Ca2+ as optimum metal ion. The optimum temperature and pH were 37 ℃ and 7.5, respectively. Under the optimum conditions, the enzyme activity of collagenase was (65.81±2.06) U/mL, 1.5-fold increased than that before the optimization. After purified with strong anion exchange resins, a collagenase with the purity higher than 90%, the molecular weight about 100 kDa, and the specific activity of 7615.0±78.7 U/mg was obtained. Conclusion: The activity of Bacillus cereus collagenase was higher than the reported collagenases. Using this novel collagenase, collagen could be degraded into short biological peptides in a short time. Hence, this collagenase has application prospects in many fields, such as food, medical, health care products and cosmetics.


Asunto(s)
Bacillus cereus/enzimología , Proteínas Bacterianas/metabolismo , Colagenasas/metabolismo , Microbiología del Suelo , Bacillus cereus/clasificación , Bacillus cereus/genética , Bacillus cereus/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Colagenasas/química , Colagenasas/genética , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Estabilidad de Enzimas , Fermentación , Glucosa/análisis , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Peso Molecular , Peptonas/análisis , Peptonas/metabolismo , Filogenia , Temperatura
19.
World J Microbiol Biotechnol ; 31(7): 1061-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25940326

RESUMEN

Filamentous Nostoc flagelliforme form colloidal complex, with beaded cells interacting with other bacteria embedded in the complex multilayer sheath. However, the species of bacteria in the sheath and the interaction between N. flagelliforme and associated bacteria remain unclear. In this study, PCR-denaturing gradient gel electrophoresis (DGGE) was used to investigate the bacterial communities of N. flagelliforme from three regions of China. DGGE patterns showed variations in all samples, exhibiting 25 discrete bands with various intensities. The diversity index analysis of bands profiles suggested the high similarity of bacterial communities to each other but also the dependence of microbial composition on each location. Phylogenetic affiliation indicated that the majority of the sequences obtained were affiliated with Actinobacteria, Cyanobacteria, Proteobacteria, Acidobacteria, Bacteroidetes, of which Cyanobacteria was dominant, followed the Proteobacteria. Members of the genus Nostoc were the most abundant in all samples. Rhizobiales and Actinobacteria were identified, whereas, Craurococcus, Caulobacter, Pseudomonas, Terriglobus and Mucilaginibacter were also identified at low levels. Through comparing the bacterial composition of N. flagelliforme from different regions, it was revealed that N. flagelliforme could facilitate the growth of other microorganisms including both autotrophic bacteria and heterotrophic ones and positively contributed to their harsh ecosystems. The results indicated N. flagelliforme played an important role in diversifying the microbial community composition and had potential application in soil desertification.


Asunto(s)
Bacterias/clasificación , ADN Bacteriano/análisis , Nostoc/fisiología , Bacterias/genética , China , Electroforesis en Gel de Gradiente Desnaturalizante , Ecosistema , Filogenia , Análisis de Secuencia de ADN , Microbiología del Suelo
20.
Biotechnol Bioeng ; 111(9): 1801-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24595802

RESUMEN

Extraction and recovery of protein from abundant plant biomass is one potential way to improve the economic feasibility of biorefineries. However, valorization of the protein fraction is challenging due to its low yield (kg protein extraction/kg biomass). In order to reveal the limiting operation parameters, the alkaline extraction process of protein from Caragana korshinskii Kom. was investigated by an integrative analysis of kinetics and thermodynamics. Both a two-site kinetic extraction model and a second-order model indicated that particle size is the most pivotal factor affecting protein extraction yield. In a two-site model, most proteins are extracted quickly from broken cells, while protein removal from the intact cells takes much longer; these are the faster and slower processes, respectively. A decrease of particle size from 20-40 to 60-80 mesh resulted in a decrease of C2 (protein yield in the slower process) from 14.02 to 7.32 mg g(-1), but a great increase of C1 (protein yield in the faster process) from 20.61 to 59.07 mg g(-1) . However, the protein yield was dominated by the faster process when the average particle size is under 80 mesh. The maximum initial extraction rate was 72.20 mg g(-1) min(-1) with the particle size of 60-80 mesh, almost ninefold of that with 20-40 mesh. Thermodynamic analysis revealed that the enthalpy change (ΔH) and entropy change (ΔS) in the protein extraction process were calculated as 21.08 kJ mol(-1) and 84.76 J K(-1), respectively. The standard free energy (ΔG) had a magnitude from -3.77 to -5.46, suggesting that the extraction process was spontaneous and physically feasible.


Asunto(s)
Álcalis/metabolismo , Caragana/química , Proteínas de Plantas/aislamiento & purificación , Termodinámica , Cinética , Modelos Químicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA