Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(5): 2919-2927, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38277794

RESUMEN

Dicarboxylic acids and derivatives are important building blocks in organic synthesis, biochemistry, and the polymer industry. Although catalytic dicarboxylation with CO2 represents a straightforward and sustainable route to dicarboxylic acids, it is still highly challenging and limited to generation of achiral or racemic dicarboxylic acids. To date, catalytic asymmetric dicarboxylation with CO2 to give chiral dicarboxylic acids has not been reported. Herein, we report the first asymmetric dicarboxylation of 1,3-dienes with CO2 via Cu catalysis. This strategy provides an efficient and environmentally benign route to chiral dicarboxylic acids with high regio-, chemo-, and enantioselectivities. The copper self-relay catalysis, that is, Cu-catalyzed boracarboxylation of 1,3-dienes to give carboxylated allyl boronic ester intermediates and subsequent carboxylation of C-B bonds to give dicarboxylates, is key to the success of this dicarboxylation. Moreover, this protocol exhibits broad substrate scope, good functional group tolerance, easy product derivatizations, and facile synthesis of chiral liquid crystalline polyester and drug-like scaffolds.

2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 744-753, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38621878

RESUMEN

This study observed the protective effect of resveratrol(Res) on ovarian function in poor ovarian response(POR) mice by regulating the Hippo signaling pathway and explored the potential mechanism of Res in inhibiting ovarian cell apoptosis. Female mice with regular estrous cycles were randomly divided into a blank group, a model group, and low-and high-dose Res groups(20 and 40 mg·kg~(-1)), with 20 mice in each group. The blank group received an equal volume of 0.9% saline solution by gavage, while the model group and Res groups received suspension of glycosides of Triptergium wilfordii(GTW) at 50 mg·kg~(-1) by gavage for two weeks to induce the model. After modeling, the low-and high-dose Res groups were continuously treated with drugs by gavage for two weeks, while the blank group and the model group received an equal volume of 0.9% saline solution by gavage. Ovulation was induced in all groups on the day following the end of treatment. Finally, 12 female mice were randomly selected from each group, and the remaining eight female mice were co-housed with male mice at a ratio of 1∶1. Changes in the estrous cycle of mice were observed using vaginal cytology smears. The number of ovulated eggs, ovarian wet weight, ovarian index, and pregnancy rate of mice were measured. The le-vels of anti-Mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in serum were determined using enzyme-linked immunosorbent assay(ELISA). Ovarian tissue morphology and ovarian cell apoptosis were observed using hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining, respectively. The protein expression levels of yes-associated protein(YAP) 1 and transcriptional coactivator with PDZ-binding motif(TAZ) were detected by immunohistochemistry(IHC), while the changes in protein expression levels of mammalian sterile 20-like kinase(MST) 1/2, large tumor suppressor(LATS) 1/2, YAP1, TAZ, B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were determined by Western blot. The results showed that compared with the blank group, the model group had an increased rate of estrous cycle disruption in mice, a decreased number of normally developing ovarian follicles, an increased number of blocked ovarian follicles, increased ovarian granulosa cell apoptosis, decreased ovulation, reduced ovarian wet weight and ovarian index, increased serum FSH and LH levels, decreased AMH and E_2 levels, decreased protein expression levels of YAP1 and TAZ in ovarian tissues, increased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and decreased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Additionally, the number of embryos per litter significantly decreased after co-housing. Compared with the model group, the low-and high-dose Res groups exhibited reduced estrous cycle disruption rates in mice, varying degrees of improvement in the number and morphology of ovarian follicles, reduced numbers of blocked ovarian follicles, improved ovarian granulosa cell apoptosis, increased ovulation, elevated ovarian wet weight and ovarian index, decreased serum FSH and LH levels, increased AMH and E_2 levels, elevated protein expression levels of YAP1 and TAZ in ovarian tissues, decreased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and increased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Furthermore, the number of embryos per litter increased to varying degrees after co-housing. In conclusion, Res effectively inhibits ovarian cell apoptosis in mice and improves ovarian responsiveness. Its mechanism may be related to the regulation of key molecules in the Hippo pathway.


Asunto(s)
Vía de Señalización Hippo , Ovario , Embarazo , Ratones , Femenino , Masculino , Animales , Proteína X Asociada a bcl-2/metabolismo , Resveratrol/farmacología , Solución Salina/metabolismo , Solución Salina/farmacología , Hormona Folículo Estimulante/metabolismo , Hormona Folículo Estimulante/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Mamíferos/metabolismo
3.
Angew Chem Int Ed Engl ; 63(22): e202403401, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38527960

RESUMEN

Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.

4.
New Phytol ; 240(6): 2468-2483, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37823217

RESUMEN

Meloidogyne enterolobii is an emerging root-knot nematode species that overcomes most of the nematode resistance genes in crops. Nematode effector proteins secreted in planta are key elements in the molecular dialogue of parasitism. Here, we show the MeMSP1 effector is secreted into giant cells and promotes M. enterolobii parasitism. Using co-immunoprecipitation and bimolecular fluorescent complementation assays, we identified glutathione-S-transferase phi GSTFs as host targets of the MeMSP1 effector. This protein family plays important roles in plant responses to abiotic and biotic stresses. We demonstrate that MeMSP1 interacts with all Arabidopsis GSTF. Moreover, we confirmed that the N-terminal region of AtGSTF9 is critical for its interaction, and atgstf9 mutant lines are more susceptible to root-knot nematode infection. Combined transcriptome and metabolome analyses showed that MeMSP1 affects the metabolic pathways of Arabidopsis thaliana, resulting in the accumulation of amino acids, nucleic acids, and their metabolites, and organic acids and the downregulation of flavonoids. Our study has shed light on a novel effector mechanism that targets plant metabolism, reducing the production of plant defence-related compounds while favouring the accumulation of metabolites beneficial to the nematode, and thereby promoting parasitism.


Asunto(s)
Arabidopsis , Tylenchoidea , Animales , Arabidopsis/genética , Interacciones Huésped-Parásitos , Tylenchoidea/fisiología , Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Enfermedades de las Plantas/genética
5.
Pak J Med Sci ; 39(3): 752-756, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250537

RESUMEN

Objectives: To investigate the difference of application of core needle biopsy histology and fine needle aspiration cytology in cervical lymphadenopathy. Methods: A retrospective analysis was made on 80 patients with cervical lymphadenopathy admitted to Baoding No.1 Central Hospital from to October 2018 to February 2020, and they were randomly divided into two groups: core needle group and fine needle group. Patients in the core needle group were given core needle biopsy histology, while those in the fine needle group were given fine needle aspiration cytology, and the puncture results and surgical complications were compared between the two groups. Results: The accuracy rates of the core needle group and the fine needle group in the diagnosis of malignant cervical lymph nodes were 95.83% and 72.22% respectively, with a statistically significant difference (χ²=4.683, p=0.030). The sensitivity, specificity, positive predictive value and negative predictive value of the core needle group were 100.00%, 93.75%, 95.83% and 100.00% respectively, while those of the fine needle group were 86.67%, 90.00%, 86.67% and 90.00% respectively, with no statistically significant differences between the two groups (p>0.05). The complication rate in the core needle group was 22.50%, which was higher than the 5.00% in the fine needle group (χ²=5.165, p=0.023). Conclusions: No significant difference was observed between core needle biopsy histology and fine needle aspiration cytology in diagnosing cervical lymphadenopathy, but the former has a high complication rate.

6.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5888-5897, 2023 Nov.
Artículo en Zh | MEDLINE | ID: mdl-38114185

RESUMEN

This study aims to investigate the therapeutic effects and potential mechanisms of resveratrol(Res) on poor ovarian response(POR) in mice. The common target genes shared by Res and POR were predicted by network pharmacology, used for Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and then validated by animal experiments. The mice with regular estrous cycle after screening were randomized into normal, POR, and low-and high-dose(20 and 40 mg·kg~(-1), respectively) Res groups. The normal group was administrated with an equal volume of 0.9% sodium chloride solution by gavage, and the mice in other groups with tripterygium glycosides suspension(50 mg·kg~(-1)) by gavage for 2 weeks. After the modeling, the mice in low-and high-dose Res groups were treated with Res by gavage for 2 weeks, and the mice in normal and POR groups with an equal volume of 0.9% sodium chloride solution by gavage. Ovulation induction and sample collection were carried out on the day following the end of treatment. Vaginal smears were collected for observation of the changes in the estrous cycle, the counting of retrieved oocytes, and the measurement of ovarian wet weight and ovarian index. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of anti-mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in the serum. The ovarian tissue morphology and granulosa cell apoptosis were observed by hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL), respectively. Western blot was employed to determine the protein levels of phosphatidylinositol 3-kinase(PI3K), protein kinase B(AKT), forkhead box O(FOXO) 3a, hypoxia-inducible factor(HIF)-1α, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). A total of 222 common targets shared by Res and POR were collected. GO annotation indicated that these targets were mainly involved in oxidative stress response. KEGG enrichment analysis revealed that Res can intervene in POR via PI3K/AKT, HIF-1, and FOXO signaling pathways. Animal experiments showed that the model group had higher rate of estrous cycle disorders, lower number and poorer morphology of normally developed follicles at all levels, more atretic follicles, higher apoptosis of ovarian granulosa cells, lower number of retrieved oocytes, lower ovarian wet weight and ovarian index, higher serum levels of FSH and LH, lower levels of AMH and E_2, higher expression levels of HIF-1α, FOXO3a and Bax, and lower expression levels of PI3K, AKT, and Bcl-2 in the ovarian tissue than the normal group. Compared with the POR group, low-and high-dose Res decreased the rate of estrous cycle disorders, improved the follicle number and morphology, reduced atretic follicles, promoted the apoptosis of ovarian granulosa cells, increased retrieved oocytes, ovarian wet weight and ovarian index, and lowered serum FSH and LH levels. Moreover, Res down-regulated the expression levels of HIF-1α, FOXO3a and Bax, and up-regulated the expression levels of PI3K, AKT and Bcl-2 in the ovarian tissue. In summary, Res can inhibit apoptosis and mitigate poor ovarian response in mice by regulating the PI3K/AKT/FOXO3a and HIF-1α pathways.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Femenino , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resveratrol/farmacología , Proteína X Asociada a bcl-2 , Fosfatidilinositol 3-Quinasas/metabolismo , Cloruro de Sodio , Hormona Folículo Estimulante , Proteínas Proto-Oncogénicas c-bcl-2
7.
Angew Chem Int Ed Engl ; 62(11): e202217918, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36680762

RESUMEN

Visible-light photocatalytic carboxylation with CO2 is highly important. However, it still remains challenging for reluctant substrates with low reduction potentials. Herein, we report a novel photocatalytic carboxylation of C-N bonds in cyclic amines with CO2 via consecutive photo-induced electron transfer (ConPET). It is also the first photocatalytic reductive ring-opening reaction of azetidines, pyrrolidines and piperidines. This strategy is practical to transform a variety of easily available cyclic amines to valuable ß-, γ-, δ- and ϵ-amino acids in moderate-to-excellent yields. Moreover, the method also features mild and transition-metal-free conditions, high selectivity, good functional-group tolerance, facile scalability and product derivations. Mechanistic studies indicate that the ConPET might be the key to generating highly reactive photocatalysts, which enable the reductive activation of cyclic amines to generate carbon radicals and carbanions as the key intermediates.

8.
Angew Chem Int Ed Engl ; 62(23): e202301892, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37010979

RESUMEN

Carboxylation of easily available alkenes with CO2 is highly important to afford value-added carboxylic acids. Although dicarboxylation of activated alkenes, especially 1,3-dienes, has been widely investigated, the challenging dicarboxylation of unactivated 1,n-dienes (n>3) with CO2 remains unexplored. Herein, we report the first dicarboxylation of unactivated skipped dienes with CO2 via electrochemistry, affording valuable dicarboxylic acids. Control experiments and DFT calculations support the single electron transfer (SET) reduction of CO2 to its radical anion, which is followed by sluggish radical addition to unactivated alkenes, SET reduction of unstabilized alkyl radicals to carbanions and nucleophilic attack on CO2 to give desired products. This reaction features mild reaction conditions, broad substrate scope, facile derivations of products and promising application in polymer chemistry.

9.
Acc Chem Res ; 54(10): 2518-2531, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33956436

RESUMEN

Carbon dioxide (CO2) is not only a greenhouse gas and a common waste product but also an inexpensive, readily available, and renewable carbon resource. It is an important one-carbon (C1) building block in organic synthesis for the construction of valuable compounds. However, its utilization is challenging owing to its thermodynamic stability and kinetic inertness. Although significant progress has been achieved, many limitations remain in this field with regard to the substrate scope, reaction system, and activation strategies.Since 2015, our group has focused on CO2 utilization in organic synthesis. We are also interested in the vast possibilities of radical chemistry, although the high reactivity of radicals presents challenges in controlling selectivity. We hope to develop highly useful CO2 transformations involving radicals by achieving a balance of reactivity and selectivity under mild reaction conditions. Over the past 6 years, we along with other experts have disclosed radical-type carboxylative cyclizations and carboxylations using CO2.We initiated our research by realizing the Cu-catalyzed radical-type oxytrifluoromethylation of allylamines and heteroaryl methylamines to generate valuable 2-oxazolidones with various radical precursors. Apart from Cu catalysis, visible-light photoredox catalysis is also a powerful method to achieve efficient carboxylative cyclization. In these cases, single-electron-oxidation-promoted C-O bond formation between benzylic radicals and carbamates is the key step.Since carboxylic acids exist widely in natural products and bioactive drugs and serve as important bulk chemicals in industry, we realized further visible-light-promoted carboxylations with CO2 to construct such chemicals. We have achieved the selective umpolung carboxylations of imines, enamides, tetraalkylammonium salts, and oxime esters by successive single-electron-transfer (SSET) reduction. Using this strategy, we have also realized the dearomative arylcarboxylation of indoles with CO2. In addition to the incorporation of 1 equiv of CO2 per substrate, we have recently developed a visible-light photoredox-catalyzed dicarboxylation of alkenes, allenes, and (hetero)arenes via SSET reduction, which allows the incorporation of two CO2 molecules into organic compounds to generate valuable diacids as polymer precursors.In addition to the two-electron activation of CO2, we sought to develop new strategies to realize efficient and selective transformations via single-electron activation of CO2. Inspired by the hypothetical electron-transfer mechanism of iron-sulfur proteins, we have realized the visible-light-driven thiocarboxylation of alkenes with CO2 using catalytic iron salts as promoters. The in-situ-generated Fe/S complexes are likely able to reduce CO2 to its radical anion, which could react with alkenes to give a stabilized carbon radical. Moreover, we have also disclosed charge-transfer complex (CTC) formation between thiolate and acrylate/styrene to realize the visible-light-driven hydrocarboxylation of alkenes with CO2 via generation of a CO2 or alkene radical anion. On the basis of this novel CTC, the visible-light-driven organocatalytic hydrocarboxylation of alkenes with CO2 has also been realized using a Hantzsch ester as an effective reductant.

10.
Arch Microbiol ; 204(6): 338, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590019

RESUMEN

A Gram-stain-negative, strictly aerobic, non-flagellated, oxidase- and catalase-positive, rod-shaped marine bacterium, designated strain DM8T, was isolated from the intestine of Trichiurus japonicus in Weihai, China. The strain optimally grew at 25-35℃, with 1.0-4.0% (w/v) NaCl and at pH 7.0-8.0. Its colonies were circular, slightly yellow, non-transparent, smooth, and approximately 0.8-1.5 mm in diameter, after being cultured for 48 h on marine agar 2216. Based on the result of phylogenetic analysis of 16S rRNA gene sequence, strain DM8T had close relationship with Oceanisphaera profunda SM1222T (96.9%) and the type strain DSM 15406 T of the type species Oceanisphaera litoralis (94.7%), respectively. Genome sequencing revealed a genome size of 3,109,059 bp and a G + C content of 46.9 mol%. It had Q-8 as the sole respiratory quinone and possessed C16:0, summed features 3 (C16:1ω7c/C16:1ω6c) and summed features 8 (C18:1ω7c/C18:1ω6c) as major fatty acids. The major polar lipid profile was composed of phosphatidylglycerol and phosphatidylethanolamine. Based on the phenotypic, chemotaxonomic characterizations, phylogenetic properties and genome analysis, strain DM8T should represent a novel species of the genus Oceanisphaera, for which the name Oceanisphaera pacifica sp. nov. is proposed. The type strain is DM8T (= KCTC 82764 T = MCCC 1K06133T).


Asunto(s)
Perciformes , Agua de Mar , Animales , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/química , Intestinos , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Ubiquinona/química
11.
Arch Microbiol ; 204(9): 586, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048288

RESUMEN

Members of the genus Marinomonas are known for their environmental adaptation and metabolically versatility, with abundant proteins associated with antifreeze, osmotic pressure resistance, carbohydrase and multiple secondary metabolites. Comparative genomic analysis focusing on secondary metabolites and orthologue proteins was conducted with 30 reference genome sequences in the genus Marinomonas. In this study, a Gram-stain-negative, rod-shaped, non-flagellated and strictly aerobic bacterium, designated as strain E8T, was isolated from the red algae (Gelidium amansii) in the coastal of Weihai, China. Optimal growth of the strain E8T was observed at temperatures 25-30 °C, pH 6.5-8.0 and 1-3% (w/v) NaCl. The DNA G + C content was 42.8 mol%. The predominant isoprenoid quinone was Q-8 and the major fatty acids were C16:0, summed feature 3 and summed feature 8. The major polar lipids were phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). Based on data obtained from this polyphasic taxonomic study, strain E8T should be considered as a novel species of the genus Marinomonas, for which the name Marinomonas algarum is proposed. The type strain is E8T (= KCTC 92201T = MCCC 1K07070T).


Asunto(s)
Marinomonas , Rhodophyta , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/química , Genómica , Marinomonas/genética , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Rhodophyta/genética , Rhodophyta/microbiología , Análisis de Secuencia de ADN , Ubiquinona/química
12.
Transpl Int ; 35: 10265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221789

RESUMEN

Background: Accurate identification of pathogens is essential for the diagnosis and control of infections. We aimed to compare the diagnostic performance of metagenomic next-generation sequencing (mNGS) and conventional detection methods (CDM) in lung transplant recipients (LTRs). Methods: We retrospectively analyzed 107 LTRs with suspected infection of pulmonary, blood, central nervous system or chest wall between March 2018 and November 2020. Bronchoalveolar lavage fluid and other body fluids were subject to pathogen detection by both mNGS and CDM. Results: Of the 163 specimens, 84 (51.5%) tested positive for both mNGS and culture, 19 (11.7%) of which were completely consistent, 44 (27.0%) were partially congruent, and 21 (12.9%) were discordant (kappa = .215; p = .001). Compared with CDM, mNGS detected a higher diversity of pathogens. Moreover, the turn-around time was significantly shorter for mNGS compared with culture (2.7 ± .4 vs. 5.5 ± 1.6 days, p < .001). As an auxiliary method, treatment strategies were adjusted according to mNGS findings in 31 cases (29.0%), including eight patients with non-infectious diseases, who were finally cured. Conclusion: mNGS can identify pathogens with a shorter turn-around time and therefore provide a more accurate and timely diagnostic information to ascertaining pulmonary infections. mNGS might have a role in differentiating infectious from non-infectious lung diseases in LTRs.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Receptores de Trasplantes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Pulmón , Estudios Retrospectivos , Sensibilidad y Especificidad
13.
Pak J Med Sci ; 38(6): 1477-1482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991229

RESUMEN

Objectives: To compare the diagnostic efficacy of fine needle aspiration (FNA) and core needle biopsy (CNB) for metastatic lymph nodes guided by contrast-enhanced ultrasound (CEUS), and to provide reference for clinical selection of puncture methods. Methods: A total of 168 patients who were admitted to Baoding No.1 Central Hospital from June 2020 to January 2021 and required puncture of the diseased lymph nodes were included. Seventy six patients were guided by conventional ultrasound, of which 37 received FNA and 39 received CNB. 92 patients were guided by CEUS, of which 41 received FNA and 51 received CNB. The diagnostic accuracy of FNA and CNB guided by conventional ultrasound and CEUS was compared, and the sensitivity, specificity, positive predictive value, and negative predictive value of FNA and CNB in the diagnosis of metastatic lymph nodes guided by CEUS were further compared. Results: The diagnostic accuracy of FNA and CNB guided by CEUS were higher than that guided by conventional ultrasound, with a statistically significant difference (P<0.05). The sensitivity, specificity, positive predictive value, and negative predictive value of FNA and CNB in the diagnosis of metastatic lymph nodes were 95.0%, 95.2%, 95.0%, 95.2%, 100%, 100%, 100%, 100%, respectively, with statistically significant differences (P>0.05). Conclusion: CEUS can guide puncture and improve diagnosis accuracy. No statistical difference can be seen in the diagnostic efficacy of CNB and FNA for metastatic lymph nodes, CNB can provide more diagnostic information, while FNA can replace CNB for metastatic lymph nodes adjacent to blood vessels and difficult to operate.

14.
Angew Chem Int Ed Engl ; 61(9): e202115456, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34890107

RESUMEN

Selective C-F bond functionalization of perfluoalkyl units has huge potential towards accessing functionalized organofluorinated compounds, but remains challenging due to the high C-F bond strength and inherent selectivity challenges. We report a new catalytic approach to the selective functionalization of strong C-F bonds in polyfluorinated aliphatic esters and amides. This simple reaction proceeds in mild and operational fashion with divergent conversions, including hydrodefluorination, defluoroalkylation, and defluoroalkenylation, affording a diverse array of important partially fluorinated motifs. Straightforward downstream chemistry towards fluorinated alcohols, amines and drug derivatives highlights the potential of the protocol.

15.
BMC Pulm Med ; 21(1): 348, 2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34742287

RESUMEN

BACKGROUND: High-throughput next-generation sequencing (HT-NGS) has the potential to detect a large variety of pathogens; however, the application of HT-NGS in lung transplant (LTx) recipients remains limited. We aimed to evaluate the value of HT-NGS for pathogen detection and diagnosis of pulmonary infection during early-stage post-lung transplantation. METHODS: In this retrospective study, we enrolled 51 LTx recipients who underwent lung transplantation between January 2020 and December 2020. Bronchoalveolar lavage fluid (BALF) samples were collected for the detection of pathogens using both HT-NGS and conventional microbiological testing. The detection of pathogens and diagnostic performance of HT-NGS were compared with that of conventional methods. RESULTS: HT-NGS provided a higher positive rate of pathogen detection than conventional microbiological testing (88.24% vs. 76.47%). The most common bacteria detected via HT-NGS during early-stage post-lung transplantation were Enterococcus, Staphylococcus, Pseudomonas and Klebsiella, while all fungi were Candida and all viruses were Herpesvirus. Uncommon pathogens, including Strongyloides, Legionella, and Mycobacterium abscesses were identified by HT-NGS. The sensitivity of HT-NGS for diagnosing pulmonary infection was significantly higher than that of conventional microbiological testing (97.14% vs. 68.57%; P < 0.001). For three LTx recipients, treatment regimens were adjusted according to the results of HT-NGS, leading to a complete recovery. CONCLUSION: HT-NGS is a highly sensitive technique for pathogen detection, which may provide diagnostic advantages, especially in LTx recipients, contributing to the optimization of treatment regimens against pulmonary infection during early-stage post-lung transplantation.


Asunto(s)
Líquido del Lavado Bronquioalveolar/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Anciano , Bacterias/aislamiento & purificación , Femenino , Hongos/aislamiento & purificación , Herpesviridae/aislamiento & purificación , Humanos , Enfermedades Pulmonares/microbiología , Trasplante de Pulmón/efectos adversos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
16.
Angew Chem Int Ed Engl ; 60(24): 13671-13676, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33729650

RESUMEN

We report the synthesis of ß-lactams from α-ketoacylsilanes and imines, which proceeds via a formal [2+2] photochemical cycloaddition with in situ generation of siloxyketene. This mild and operationally simple reaction proceeds in an atom-economic fashion with broad substrate scope, including aldimines, ketimines, hydrazones, and fused nitrogen heterocycles, affording a variety of important ß-lactams with satisfactory diastereoselectivities in most cases. This reaction also features good functional-group tolerance, facile scalability and product diversification. Experimental and computational studies suggest that α-ketoacylsilanes can serve as photochemical precursors by engaging in a 1,3 silicon shift to the distal carbonyl group.

17.
New Phytol ; 228(4): 1417-1430, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32542658

RESUMEN

Large amounts of effectors are secreted by the oesophageal glands of plant-parasitic nematodes, but their molecular mode of action remains largely unknown. We characterized a Meloidogyne incognita protein disulphide isomerase (PDI)-like effector protein (MiPDI1) that facilitates nematode parasitism. In situ hybridization showed that MiPDI1 was expressed specifically in the subventral glands of M. incognita. It was significantly upregulated during parasitic stages. Immunolocalization demonstrated MiPDI1 secretion in planta during nematode migration and within the feeding cells. Host-induced silencing of the MiPDI1 gene affected the ability of the nematode to infect the host, whereas MiPDI1 expression in Arabidopsis increased susceptibility to M. incognita, providing evidence for a key role of MiPDI1 in M. incognita parasitism. Yeast two-hybrid, bimolecular fluorescence complementation and coimmunoprecipitation assays showed that MiPDI1 interacted with a tomato stress-associated protein (SlSAP12) orthologous to the redox-regulated AtSAP12, which plays an important role in plant responses to abiotic and biotic stresses. SAP12 silencing or knocking out in Nicotiana benthamiana and Arabidopsis increased susceptibility to M. incognita. Our results suggest that MiPDI1 acts as a pathogenicity factor promoting disease by fine-tuning SAP-mediated responses at the interface of redox signalling, defence and stress acclimation in Solanaceae and Arabidopsis.


Asunto(s)
Arabidopsis , Tylenchoidea , Animales , Arabidopsis/genética , Proteínas de Choque Térmico , Enfermedades de las Plantas , Nicotiana
18.
Int J Mol Sci ; 21(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429304

RESUMEN

Plant-parasitic nematodes secrete a series of effectors to promote parasitism by modulating host immunity, but the detailed molecular mechanism is ambiguous. Animal parasites secrete macrophage migration inhibitory factor (MIF)-like proteins for evasion of host immune systems, in which their biochemical activities play essential roles. Previous research demonstrated that MiMIF-2 effector was secreted by Meloidogyne incognita and modulated host immunity by interacting with annexins. In this study, we show that MiMIF-2 had tautomerase activity and protected nematodes against H2O2 damage. MiMIF-2 expression not only decreased the amount of H2O2 generation during nematode infection in Arabidopsis, but also suppressed Bax-induced cell death by inhibiting reactive oxygen species burst in Nicotiana benthamiana. Further, RNA-seq transcriptome analysis and RT-qPCR showed that the expression of some heat-shock proteins was down regulated in MiMIF-2 transgenic Arabidopsis. After treatment with flg22, RNA-seq transcriptome analysis indicated that the differentially expressed genes in MiMIF-2 expressing Arabidopsis were pointed to plant hormone signal transduction, compound metabolism and plant defense. RT-qPCR and metabolomic results confirmed that salicylic acid (SA) related marker genes and SA content were significantly decreased. Our results provide a comprehensive understanding of how MiMIF-2 modulates plant immunity and broaden knowledge of the intricate relationship between M. incognita and host plants.


Asunto(s)
Proteínas del Helminto/metabolismo , Ácido Salicílico/metabolismo , Tylenchoidea/enzimología , Animales , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/parasitología , Regulación hacia Abajo/efectos de los fármacos , Escherichia coli , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas/efectos de los fármacos , Parásitos/metabolismo , Raíces de Plantas/parasitología , Plantas Modificadas Genéticamente , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/metabolismo
19.
Angew Chem Int Ed Engl ; 59(47): 21121-21128, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32750191

RESUMEN

Remote difunctionalization of unactivated alkenes is challenging but a highly attractive tactic to install two functional groups across long distances. Reported herein is the first remote difunctionalization of alkenes with CO2 . This visible-light photoredox catalysis strategy provides a facile method to synthesize a series of carboxylic acids bearing valuable fluorine- or phosphorus-containing functional groups. Moreover, this versatile protocol shows mild reaction conditions, broad substrate scope, and good functional-group tolerance. Based on DFT calculations, a radical adds to an unactivated alkene to smoothly form a new carbon radical, followed by a 1,5-hydrogen atom-transfer process, the rate-limiting step, generating a more stable benzylic radical. The reduction of the benzylic radicals by an IrII species generates the corresponding benzylic carbanions as the key intermediates, which further undergo nucleophilic attack with CO2 to generate carboxylates.

20.
J Am Chem Soc ; 141(41): 16227-16231, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31558013

RESUMEN

Carbene insertion reactions with B-H bonds are a challenging but promising method for the synthesis of organoboranes. Herein, we report visible-light-induced B-H insertions of HBpin with acylsilane. This metal-free and operationally simple reaction proceeds in an atom-economical way with broad substrate scope under mild reaction conditions, affording a variety of important α-alkoxyorganoboronate esters in quantitative yields. Control experiments and density functional theory calculations suggest that the siloxycarbene generation from the T1 state of acylsilane and the carbene insertion into the B-H bond occurred in a concerted manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA