Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Small ; 20(10): e2306344, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875719

RESUMEN

The coupling of photocatalytic hydrogen production and selective oxidation of benzylamine is a topic of significant research interest. However, enhancing the bifunctional photocatalytic activity in this context is still a major challenge. The construction of Z-scheme heterojunctions is an effective strategy to enhance the activity of bifunctional photocatalysts. Herein, a p-n type direct Z-scheme heterojunction CuS/TiO2 is constructed using metal-organic framework (MOF)-derived TiO2 as a substrate. The carrier density is measured by Mott-Schottky under photoexcitation, which confirms that the Z-scheme electron transfer mode of CuS/TiO2 is driven by the diffusion effect caused by the carrier concentration difference. Benefiting from efficient charge separation and transfer, photogenerated electrons, and holes are directedly transferred to active oxidation and reduction sites. CuS/TiO2 also exhibits excellent bifunctional photocatalytic activity without noble metal cocatalysts. Among them, the H2 evolution activity of the CuS/TiO2 is found to be 17.1 and 29.5 times higher than that of TiO2 and CuS, respectively. Additionally, the yields of N-Benzylidenebenzylamine (NBB) are 14.3 and 47.4 times higher than those of TiO2 and CuS, respectively.

2.
Small ; 20(29): e2310664, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342707

RESUMEN

Establishing effective charge transfer channels between two semiconductors is key to improving photocatalytic activity. However, controlling hetero-structures in situ and designing binding modes pose significant challenges. Herein, hydrolytic SnCl2·2H2O is selected as the metal source and loaded in situ onto a layered carbon nitriden supramolecular precursor. A composite photocatalyst, S4-Sn-N2, with electron pathways of SnS2 and tubular carbon nitriden (TCN) is prepared through pyrolysis and vulcanization processes. The contact interface of SnS2-TCN is increased significantly, promoting the formation of S4-Sn-N2 micro-structure in a Z-scheme charge transfer channel. This structure accelerates the separation and transport of photogenerated carriers, maintains the stronger redox ability, and improves the stability of SnS2 in this series of heterojunctions. Therefore, the catalyst demonstrated exceptional photocatalytic hydrogen production efficiency, achieving a reaction rate of 86.4 µmol h-1, which is 3.15 times greater than that of bare TCN.

3.
J Am Chem Soc ; 145(38): 20837-20848, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37625395

RESUMEN

Coupled photocatalysis without cocatalysts can maximize the utilization of photons and atoms, which puts forward higher demands on photocatalysts. Polymeric carbon nitride (CN) has become the most promising photocatalyst, but still suffers from major drawbacks of insufficient catalytic sites and low quantum efficiency. Herein, we report a fluid shear stress-assisted molecular assembly to prepare ultrathin-nanosheet-assembled acanthosphere-like CN (ASCN) with nitrogen vacancy (Nv) and carbonyl modification. Shear stress breaks the stacking interactions between layers and cuts the stacked structure into ultrathin layers, which are further reassembled into acanthosphere bundles driven by "centrifugal force". Benefitted greatly from the ultrathin nature that provides more exposed active sites and improves charge carrier separation, ASCN-3 exhibits a 20-fold higher activity than the bulk counterpart toward oxygen reduction to H2O2 coupled with 4-methoxybenzyl alcohol (4-MBA) oxidation to anisaldehyde (AA), with significantly increased turnover frequency (TOF) values (TOF: 1.69 h-1 for H2O2 and 1.02 h-1 for AA). Significantly, ASCN-3 exhibits 95.8% conversion for 4-MBA oxidation with nearly 100% selectivity. High apparent quantum yields of 11.7% and 9.3% at 420 nm are achieved for H2O2 photosynthesis and 4-MBA oxidation. Mechanism studies suggest that carbonyl induces holes concentrated at the neighboring melem unit to directly oxidize the Cα-H bond of 4-MBA to produce carbon radicals, and Nv as oxygen adsorption active site traps electrons to form a superoxide radical that further combines with the shed protons into H2O2. This work presents a simple physical method to break the layered stack of CN for creating hierarchical assembly for coupled photocatalysis.

4.
Small ; 17(11): e2006622, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33599046

RESUMEN

The photocatalytic efficiency of polymeric carbon nitride is hampered by high carrier recombination rate and low charge transfer. Herein, these issues are addressed by constructing 1D strip-like carbon nitride with a large π-electron conjugated system from carbon-doping, realizing the synchronization control of its electronic structure and morphology. Nicotinic acid, a monomer with the carboxyl group and pyridine ring, and melamine are selected for assembling the strip-like supramolecular via hydrogen bond under hydrothermal process. Both peripheral pyridine unit and hydrogen bond have significant effect on self-assembly process of nicotinic acid and melamine along one dimension to form a strip-like precursor. Subsequently, 1D thin porous strip-like carbon nitride is obtained by calcination treatment of precursor. The as-prepared 1D strip-like carbon nitride with effective π delocalization from carbon-doping and porous structure can accelerate charges and mass transfer and provide extra active sites. Both theoretical and experimental results demonstrate that carbon doping (pyridine heterocycle) narrows the bandgap via manipulating the band position and increases the π electron density. Thus, the 1D porous thin strip-like carbon nitride realizes compelling hydrogen evolution rate (126.2 µmol h-1 ), far beyond (≈18 fold) the value of polymeric carbon nitride (PCN) (7.2 µmol h-1 ) under visible light irradiation.

5.
Angew Chem Int Ed Engl ; 60(9): 4815-4822, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33141452

RESUMEN

Actiniae-like carbon nitride (ACN) bundles were synthesized by the pyrolysis of an asymmetric supramolecular precursor prepared from L-arginine (L-Arg) and melamine. ACN has adjustable band gaps (2.25 eV-2.75 eV) and hollow microtubes with ultrathin pore walls, which enrich reaction sites, improve visible-light absorption and enhance charge separation. In the presence of phenylcarbinol, ACN exhibited excellent water-splitting ability (95.3 µmol h-1 ) and in the meanwhile phenylcarbinol was selectively oxidized to benzaldehyde (conversion of 90.9 %, selectivity of 99.7 %) under solar irradiation. For the concurrent reactions, 2 D isotope labeling, separation, and detection were conducted to confirm that the proton source of released hydrogen is water. The mechanism of water splitting and phenylcarbinol oxidation was also investigated.

6.
J Am Chem Soc ; 141(6): 2508-2515, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30654609

RESUMEN

Polymeric carbon nitride (C3N4) has emerged as the most promising candidate for metal-free photocatalysts but is plagued by low activity due to the poor quantum efficiency and low specific surface area. Exfoliation of bulk crystals into ultrathin nanosheets has proven to be an effective and widely used strategy for enabling high photocatalytic performances; however, this process is complicated, time-consuming, and costly. Here, we report a simple bottom-up method to synthesize porous few-layer C3N4, which involves molecule self-assembly into layered precursors, alcohol molecules intercalation, and subsequent thermal-induced exfoliation and polycondensation. The as-prepared few-layer C3N4 expose more active sites and greatly enhance the separation of charge carriers, thus exhibiting a 26-fold higher hydrogen evolution activity than bulk counterpart. Furthermore, we find that both the high activity and selectivity for the oxidative coupling of amines to imines can be obtained under visible light that surpass those of other metal-free photocatalysts so far.

7.
Angew Chem Int Ed Engl ; 55(5): 1830-4, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26692105

RESUMEN

Phosphorus-doped hexagonal tubular carbon nitride (P-TCN) with the layered stacking structure was obtained from a hexagonal rod-like single crystal supramolecular precursor (monoclinic, C2/m). The production process of P-TCN involves two steps: 1) the precursor was prepared by self-assembly of melamine with cyanuric acid from in situ hydrolysis of melamine under phosphorous acid-assisted hydrothermal conditions; 2) the pyrolysis was initiated at the center of precursor under heating, thus giving the hexagonal P-TCN. The tubular structure favors the enhancement of light scattering and active sites. Meanwhile, the introduction of phosphorus leads to a narrow band gap and increased electric conductivity. Thus, the P-TCN exhibited a high hydrogen evolution rate of 67 µmol h(-1) (0.1 g catalyst, λ >420 nm) in the presence of sacrificial agents, and an apparent quantum efficiency of 5.68 % at 420 nm, which is better than most of bulk g-C3 N4 reported.

8.
J Microencapsul ; 32(1): 46-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25090591

RESUMEN

In this study, peptidoglycan microspheres were evaluated for their toxicity and adjuvant effects after oral administration to mice. The liver and spleen indexes, CD cell content in peripheral blood and spleen, and immunoglobulin content in peripheral blood were measured by flow cytometry and indirect ELISA, respectively. Peptidoglycan microspheres with a loading capacity of 46.41 ± 0.83 g/100 g were prepared. In vivo tests showed that peptidoglycan microspheres revealed an immuno-enhancing profile as indicated by the slow increase of IgG content in peripheral blood compared with that of the untreated peptidoglycan group. In conclusion, peptidoglycan microspheres may be used as a new oral adjuvant in the host.


Asunto(s)
Adyuvantes Inmunológicos , Microesferas , Peptidoglicano , Adyuvantes Inmunológicos/farmacocinética , Adyuvantes Inmunológicos/farmacología , Administración Oral , Animales , Evaluación Preclínica de Medicamentos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Peptidoglicano/inmunología , Peptidoglicano/farmacología
9.
Chemistry ; 20(2): 474-82, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24307511

RESUMEN

With a facile electrophoretic deposition and chemical bath process, CoS nanoparticles have been uniformly dispersed on the surface of the functionalized graphene nanosheets (FGNS). The composite was employed as a counter electrode of dye-sensitized solar cells (DSSCs), which yielded a power conversion efficiency of 5.54 %. It is found that this efficiency is higher than those of DSSCs based on the non-uniform CoS nanoparticles on FGNS (4.45 %) and built on the naked CoS nanoparticles (4.79 %). The achieved efficiency of our cost-effective DSSC is also comparable to that of noble metal Pt-based DSSC (5.90 %). Our studies have revealed that both the exceptional electrical conductivity of the FGNS and the excellent catalytic activity of the CoS nanoparticles improve the conversion efficiency of the uniformly FGNS-CoS composite counter electrode. The electrochemical impedance spectra, cyclic voltammetry, and Tafel polarization have evidenced the best catalytic activity and the fastest electron transport. Additionally, the dispersion condition of CoS nanoparticles on FGNS plays an important role for catalytic reduction of I3 (-) .

10.
J Colloid Interface Sci ; 674: 894-901, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959735

RESUMEN

The endeavor to architect bifunctional electrocatalysts that exhibit both exceptional activity and durability heralds an era of boundless potential for the comprehensive electrolysis of seawater, an aspiration that, nevertheless, poses a substantial challenge. Within this work, we describe the precise engineering of a three-dimensional interconnected nanoparticle system named SCdoped Co2VO4/CoP (SCCo2VO4), achieved through a meticulously arranged hydrothermal treatment sequence followed by gas-phase carbonization and phosphorization. The resulting SCCo2VO4 electrode exhibits outstanding bifunctional electrocatalytic stability, attributed to the strategic anionic doping and abundant heterogeneous interfaces. Doping not only adjusts the electronic structure, enhancing electron transfer efficiency but also optimizes the surface-active sites. This electrode prodigiously necessitated an extraordinarily minimal overpotential of merely 92 and 350 mV to attain current densities of 10 and 50 mA cm-2 for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in 1 M KOH solution. Noteworthily, when integrated into an electrolyzer for the exhaustive splitting of seawater, the SCP-Co2VO4 manifested an exceptionally low cell voltage of 2.08 V@50 mA cm-2 and showcased a durability that eclipses that of most hitherto documented nickel-based bifunctional materials. Further elucidation through Density Functional Theory (DFT) analyses underscored that anion doping and the inherent heterostructure adeptly optimize the Gibbs free energy of intermediates comprising hydrogen, chlorine, and oxygen (manifested as OH, O, OOH) within the HER and OER paradigms, thus propelling the electrochemical kinetics of seawater splitting to unprecedented velocities. These revelations unfurl a pioneering design philosophy for the creation of cost-effective yet superior catalysts aimed at the holistic division of water molecules, charting a course towards the realization of efficient and sustainable hydrogen production methodologies.

11.
Front Chem ; 12: 1340955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370095

RESUMEN

Designing and developing photocatalysts with excellent performance in order to achieve efficient hydrogen production is an important strategy for addressing future energy and environmental challenges. Traditional single-phase photocatalytic materials either have a large bandgap and low visible light response or experience rapid recombination of the photogenerated carriers with low quantum efficiency, seriously hindering their photocatalytic applications. To solve these issues, an important solution is to construct well-matched heterojunctions with highly efficient charge separation capabilities. To this end, an in situ sulfurization reaction was adopted after the deposition of Bi3+ supramolecular complex on a layered supramolecular precursor of tubular carbon nitride (TCN). X-ray diffraction (XRD) patterns confirmed that the as-prepared sample has a good crystalline structure without any other impurities, while high-resolution transmission electron microscopy (HR-TEM) revealed that the heterojunction possesses a 2D structure with a layer of nano-array on its surface. Combined Fourier-transform infrared (FT-IR) spectra and energy-dispersive X-ray spectroscopy (EDX) revealed the interfacial interactions. Owing to the formation of the Z-scheme heterojunction, the visible light adsorption and the separation efficiency of the photo-generated carriers are both obviously enhanced, leaving the high energy electrons and high oxidative holes to participate in the photocatalytic reactions. As a result, the photocatalytic hydrogen evolution rate of Bi2S3-TCN achieves 65.2 µmol g-1·h-1. This proposed green and environmentally benign route can also be applied to construct other sulfides with 2D TCN, providing some important information for the design and optimization of novel carbon-nitride-based semiconductors.

12.
Phys Chem Chem Phys ; 15(44): 19353-9, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24121733

RESUMEN

The hollow palladium nanospheres with the porous shell comprised of uniform 5 nm Pd nanoparticles (Pd NS-HP) have been synthesized successfully by employing a simple replacement process between PdCl4(2-) ions and Co with the assistance of a structure-directing agent, polyvinyl pyrrolidone (PVP). Then, the obtained Pd NS-HP is supported on graphene nanosheets (GN) to prepare Pd NS-HP/GN composites by a wet-impregnation method. As the catalyst towards formic acid electrooxidation, the Pd NS-HP/GN composite exhibits a larger electrochemically active surface area, better electrocatalytic activity and better stability compared with Pd nanoparticles/graphene (Pd NP/GN) and commercial Pd/C catalysts. The enhancement in electrocatalytic performance of Pd NS-HP/GN is attributed to the abundant connected pore channels in the inner and exterior surfaces of Pd nanospheres, which could provide a large contact surface for adsorption and transmission of reactants, facilitating the oxidation of formic acid molecules on its surface and also improving the utilization of Pd metal. Moreover, the support of graphene could enhance the stability of the catalyst.

13.
Environ Sci Technol ; 46(8): 4560-6, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22417744

RESUMEN

Performance of wastewater treatement sludge-carbon (SC) can be evidently improved by removing the inorganic fractions. A novel investigation for recovery of Al from acid leaching of SC and synthesis of nano-Al(OH)(3) has been conducted. Results show that the sodium aluminates with high purity can be obtained by effectively dissolving the inorganic fractions from SC and by further removing the impurities (Fe(3+), Ca(2+), Mg(2+), S(4+), and P(3+)). Highly dispersed Al(OH)(3) with high S(BET) is obtained at pH = 6. The peaks of -CH(2)- vibration and the C1s peaks (binding energies of 284.6 eV) imply that polyethylene glycol 1000 (PEG-1000) is chemically adsorbed on the surface of Al(OH)(3) samples, which is propitious to reduce the hydrogen bonds between water molecules and surface -OH groups to prevent hard agglomeration. The stretching vibration peaks of [AlO(2)](-) and the Na1s peaks confirm that a trace of sodium aluminate (NaAl(OH)(4), Na(+)(H(2)O)(4)[Al(OH)(4)(-)], or the dehydrated monomers) is retained in the prepared Al(OH)(3). The main phase transformation for calcination (≤800 °C) of the SC-derived Al(OH)(3) is from amorphous Al(OH)(3) to amorphous A1(2)O(3). Here we highlight that production of Al(OH)(3) and SC from sludge provides the potential application in significant quantities that can revolutionize the handling of such kinds of harmful waste.


Asunto(s)
Hidróxido de Aluminio/química , Óxido de Aluminio/química , Nanopartículas/química , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Carbono/química , Reciclaje , Temperatura
14.
J Colloid Interface Sci ; 608(Pt 2): 2075-2087, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34749154

RESUMEN

Herein, a type-I phosphorus-doped carbon nitride/oxygen-doped carbon nitride (P-C3N4/O-C3N4) heterojunction was designed for photocatalysis-self-Fenton reaction (photocatalytic H2O2 production and following Fenton reaction). In P-C3N4/O-C3N4, the photoinduced charge carriers were effectively separated with the help of internal-electric-field near the interface, ensuring the high catalytic performance. As a result, the production rate of H2O2 in an air-saturated solution was 179 µM·h-1, about 7.2, 2.5, 2.5 and 2.1 times quicker than that on C3N4, P-C3N4, O-C3N4, and phosphorus and oxygen co-doped C3N4, respectively. By taking advantage of the cascade mode in photocatalysis-self-Fenton reaction, H2O2 utilization efficiency was remarkably improved to 77.7%, about 9.0 times higher than that of traditional homogeneous Fenton reaction. Befitting from the superior yield and utilization efficiency, the degradation performance of P-C3N4/O-C3N4 was undoubtedly superior than other photocatalysts. This work well addressed two bottlenecks in traditional Fenton reaction: source of H2O2 and their low utilization efficiency, and the findings were beneficial to understand the mechanism and advantage of the photocatalysis-self-Fenton system in environmental remediation.

15.
J Hazard Mater ; 436: 129234, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739754

RESUMEN

Nowadays, non-typical yolk/shell structure has drawn much attentions due to the better catalytic performance than traditional counterparts (one yolk/one shell). In this study, ZIF-67 @Co2SiO4/SiO2 yolk/shell structure was prepared in one-step at room temperature, in which ZIF-67 was served as the hard-template, H2O was served as etchant and tetraethyl orthosilicat was served as the raw material for Co2SiO4/SiO2. After calcination, the non-typical CoxOy @Co2SiO4/SiO2 yolk/shell nanoreactor with Co2SiO4/SiO2 dual-shells and CoxOy multiple-cores was obtained. On the one hand, more active sites were exposed on multiple-cores surface and better protection were provided by dual-shells. On the other hand, the sheet-like Co2SiO4 inner shell not only extended the travel path and retention time of pollutants trapped in cavity, but also separated the multiple-cores from aggregation. Therefore, the nanoreactor displayed the outstanding catalytic activity and recyclability in Fenton-like reaction. Metronidazole (20 mg/L) was completely degraded after 30 min, rhodamine B (50 mg/L) and methyl orange (20 mg/L) were removed even within 5.0 min. Catalytic mechanism indicated that 1O2 greatly contributed to the pollutant degradation. This paper presented a simple, versatile, green and energy-saving method for non-typical yolk/shell nanoreactor, and it could inspire to prepare other catalysts with high activity and stability for environmental remediation.


Asunto(s)
Restauración y Remediación Ambiental , Dióxido de Silicio , Catálisis , Nanotecnología , Dióxido de Silicio/química
16.
J Colloid Interface Sci ; 607(Pt 1): 791-815, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34536936

RESUMEN

Oxygen reduction reaction (ORR) has gradually been in the limelight in recent years because of its great application potential for fuel cells and rechargeable metal-air batteries. Therefore, significant issues are increasingly focused on developing effective and economical ORR electrocatalysts. This review begins with the reaction mechanisms and theoretical calculations of ORR in acidic and alkaline media. The latest reports and challenges in ORR electrocatalysis are traced. Most importantly, the latest advances in the development of ORR electrocatalysts are presented in detail, including platinum group metal (PGM), transition metal, and carbon-based electrocatalysts with various nanostructures. Furthermore, the development prospects and challenges of ORR electrocatalysts are speculated and discussed. These insights would help to formulate the design guidelines for highly-active ORR electrocatalysts and affect future research to obtain new knowledge for ORR mechanisms.

17.
J Colloid Interface Sci ; 608(Pt 3): 2463-2471, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34763890

RESUMEN

The development of efficient carbon-carbon cross-coupling catalysts with low noble metal amounts attracts much attention recently. Herein, a Cu/C-700/Pd nanocomposite is obtained by loading trace Pd2+ onto carbon support derived from a novel mononuclear copper complex, {[Cu(POP)2(Phen)2]BF4}. The as-prepared nanomaterial features the facial structure of highly dispersed copper phosphide nanoparticles as well as Pd nanoparticles via neighboring Cu-Pd sites. The Cu/C-700/Pd nanocomposite shows excellent catalytic activity (99.73%) and selectivity in Suzuki-Miyaura cross-coupling reaction, at trace Pd loading (0.43 mol%). Compared with the reported palladium nano catalysts, its advantages are proved. The appealing gateway to this stable, innovative and recyclability, Cu/C-700/Pd nanostructure recommends its beneficial utilization in carbon-carbon coupling and other environmentally friendly processes.


Asunto(s)
Cobre , Nanopartículas , Catálisis , Paladio
18.
J Colloid Interface Sci ; 626: 639-652, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35810703

RESUMEN

Photo-Fenton reaction combining the photocatalytic reaction and Fenton reaction showed excellent degradation performance. However, it highly demanded the catalysts to display outstanding activity in these two reactions. Herein, Fe-doped carbon nitride/MXenes-derived C-TiO2/Ti3C2 (Fe-C3N4/Ti3C2/C-TiO2) was prepared via two steps: Fe-C3N4 and Ti3C2 were assembled via face-to-face attachment, following by in-situ partial oxidation of Ti3C2 to C-TiO2. DFT predicted a Z-scheme charge transfer routine via metallic Ti3C2 as bridge, which was verified by EPR and radical trapping experiments. Additionally, PDOS calculation revealed the charge density around the doped-Fe atoms was remarkably increased, leading to better H2O2 activation, which was experimentally confirmed by high yield of •OH. Moreover, Fe-C3N4/Ti3C2/C-TiO2 possessed the high photothermal effect to accelerate the surface reaction. By taking advantage of these merits, the degradation rate of Fe-C3N4/Ti3C2/C-TiO2 was at least 4.2 times higher than the reference catalysts. Our work provided an insight toward the g-C3N4/TiO2-based photo-Fenton catalysts with high performance.

19.
Adv Mater ; 34(27): e2200612, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35543386

RESUMEN

Selective oxidation of CH bonds is one of the most important reactions in organic synthesis. However, activation of the α-CH bond of ethylbenzene by use of photocatalysis-generated superoxide anions (O2 •- ) remains a challenge. Herein, the formation of individual Fe atoms on polymeric carbon nitride (CN), that activates O2  to create O2 •- for facilitating the reaction of ethylbenzene to form acetophenone, is demonstrated. By utilizing density functional theory and materials characterization techniques, it is shown that individual Fe atoms are coordinated to four N atoms of CN and the resultant low-spin Fe-N4  system (t2g 6 eg 0 ) is not only a great adsorption site for oxygen molecules, but also allows for fast transfer of electrons generated in the CN framework to adsorbed O2 , producing O2 •- . The oxidation reaction of ethylbenzene triggered by O2 •- ions turns out to have a high conversion rate of 99% as well as an acetophenone selectivity of 99%, which can be ascribed to a novel reaction pathway that is different from the conventional route involving hydroxyl radicals and the production of phenethyl alcohol. Furthermore, it possesses great potential for other CH activation reactions besides ethylbenzene oxidation.

20.
J Colloid Interface Sci ; 614: 367-377, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35104708

RESUMEN

The in-situ synthesis method to construct a heterostructure with a tight binding interface can promote the separation and transfer of charges, which is particularly crucial for improving photocatalytic efficiency. Herein, we have successfully synthesized a high-efficiency photoreduction catalyst by in situ growing a layer of flaky nickel chromium layered double hydroxides nanosheets (LDH) on carbon nitride hexagonal tube (CN) in hydrothermal. The tube-flakes like CN-LDH heterostructures have enhanced hydrogen evolution efficiency (14.5 mmol h-1 g-1), which is about 4.7 times that of pure CN (2.7 mmol h-1 g-1) and much higher than that of LDH (0.06 mmol h-1 g-1). We attribute this performance improvement mainly to the close-knit heterostructure formed between LDH and CN. This tight combination strengthens the diffusion of self-charge between the two semiconductors to form a strong built-in electric field and band bending. Under the action of the built-in electric field (BIEF), the photogenerated charge can be efficiently separated and oriented fast transfer, thereby greatly improving the photocatalytic efficiency. This work constructs a tightly connected heterostructure photocatalyst through hydrothermal method, and uses the catalyst to convert high-efficiency solar energy into renewable energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA