Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 247: 120824, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956523

RESUMEN

This study proposes the Sulphate reduction, mixed sulphide- and thiosulphate-driven Autotrophic denitrification, Nitrification, and Anammox integrated (SANIA) process for sustainable treatment of mainstream wastewater after organics capture. Three moving-bed biofilm reactors (MBBRs) were applied for developing sulphate reduction (SR), mixed sulphide- and thiosulphate-driven partial denitrification and Anammox (MSPDA), and NItrification (N), respectively. Typical mainstream wastewater after organics capture (e.g., chemically enhanced primary treatment, CEPT) was synthesized with chemical oxygen demand (COD) of 110 mg/L, sulphate of 50 mg S/L, ammonium of 30 mgN/L. The feasibility of SANIA was investigated with mimic nitrifying effluent supplied in MSPDA-MBBR (Period I), followed by the examination of the applicability of SANIA process with N-MBBR integrated (Period II), under moderate temperatures (25-27 â„ƒ). In Period I, SANIA process was established with both SR- and MSPDA-MBBR continuously operated for over 300 days (no Anammox biomass inoculation). Specifically, in MSPDA-MBBR, high rates of denitratation (2.7 gN/(m2·d)) and Anammox (2.8 gN/(m2·d)) were achieved with Anammox contributing to 81 % of the total inorganic nitrogen removal. In Period II, the integrated SANIA system was continuously operated for over 130 days, achieving up to 90 % of COD, 93 % of ammonium, and 61 % of total inorganic nitrogen (TIN) removal, with effluent concentrations lower than 10 mg COD/L, 3 mg NH4+-N/L, and 13 mg TIN-N/L. The implementation of SANIA can ultimately reduce 75 % and 40 % of organics and aeration energy for biological nitrogen removal. Considering the combination of SANIA with CEPT for carbon capture and sludge digestion/incineration for energy recovery, the new integrated wastewater technology can be a promising strategy for sustainable wastewater treatment.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Nitrificación , Aguas Residuales , Desnitrificación , Tiosulfatos , Biopelículas , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Oxidación-Reducción , Aguas del Alcantarillado , Nitrógeno
2.
Water Res ; 243: 120331, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37454462

RESUMEN

Sulfur-driven autotrophic denitrification (SdAD) is a biological process that can remove nitrate from low carbon/nitrogen (C/N) ratio wastewater. Although this process has been intensively researched, the mechanism whereby its intermediates (i.e., elemental sulfur and nitrite ions) are generated and accumulated remains elusive. Existing mathematical models developed for SdAD cannot accurately predict the intermediates in SdAD because of the incomplete knowledge of process kinetic resulting from changes in the environmental conditions and electron competition during SdAD. To address this limitation, we proposed a novel serial hybrid model structure based on a physics-informed neural network (PINN) to capture the dynamics of the process kinetics and predict the substrate concentrations in SdAD. In this study, we evaluated the model through numerical experiments and applied it to real case studies involving batch and continuous-flow reactor scenarios. By leveraging the PINN approach, the hybrid model yielded accurate predictions at both the state (i.e. substrate concentration) and kinetic levels in the numerical experiments and performed better than both mechanistic and purely data-driven models in the case studies. Furthermore, we used the trained hybrid model to design control strategies for SdAD and a novel integrated process involving SdAD and anammox for energy-efficient nitrogen removal. Finally, we discuss the advantages and application scope of the PINN-based hybrid model.


Asunto(s)
Reactores Biológicos , Desnitrificación , Cinética , Azufre , Nitratos , Procesos Autotróficos , Nitrógeno , Física
3.
Sci Total Environ ; 817: 152994, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016942

RESUMEN

The bacterial growth and death, and extracellular polymeric substances (EPS) and soluble microbial products (SMP) in aerobic membrane bioreactor (MBR) cause severe membrane fouling. Anammox bacteria grow slowly but produce much EPS and SMP. Therefore, the membrane fouling characteristic of anammox MBR is still indistinct. A NO2--N/NH4+-N < 1.0 into in the influent of an anammox MBR applies to investigate: 1) the slowest growing anammox bacteria (Candidatus Jettenia) could be enriched or not; 2) its membrane fouling characteristic. Results showed that Candidatus Jettenia successfully accumulated from 0.01% to 26.19%. The fouling characteristic of anammox MBR was entirely different from other MBRs. Firstly, obvious low transmembrane pressure (<4 KPa, 125 days) and low amount of foulants (0.22 gVSS/m2) might result from N2 production and the slow-growing Candidatus Jettenia. Secondly, the analysis of the components of membrane foulants indicated that polysaccharides of SMP in the gel layer and pore foulants were the key factors affecting membrane fouling. Finally, the large particle size of foulants (200 µm) might be caused by anammox bacteria living inside the foulants under anaerobic conditions. This study provides systematic insights into membrane characteristics of anammox MBR and a basis for the enrichment of anammox bacteria by MBR.


Asunto(s)
Membranas Artificiales , Aguas del Alcantarillado , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos/microbiología , Dióxido de Nitrógeno
4.
Sci Total Environ ; 657: 1227-1236, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30677889

RESUMEN

High adsorption capacity, good biocompatibility and low cost are highly demanded for biofilter used in ammonium-rich wastewater treatment. In this study, we used SEM, BET, XRD and 16S rRNA to document the evidence for good performance in adsorption and biodegradation in aged refuse. Parallel experiment between raw and inert refuse showed ammonium adsorption occurred at the initial week, with the highest ammonium removal efficiency of 90.36%, but saturated during the subsequent long-term operation. Meanwhile, over 6months' operation of an aged refuse biofilter was conducted to confirm that nitrification was the main pathway of ammonium conversion. The maximum nitrogen loading rate could reach up to as high as 1.28kg/m3/d, with ammonium removal efficiency at 99%. Further, high nitrifier biodiversity were detected with 'Nitrosomonas' and 'Nitrospira' in domination in the refuse. However, Nitrospira would outcompete Nitrosomonas under the oxygen limiting condition and resulted in the failure of partial nitrification. The physicochemical and biological analysis show that biodegradation is the main ammonium conversion pathway, which is the critical finding of this work. This investigation would help to accelerate the application of the aged refuse process in ammonium-rich wastewater treatment.


Asunto(s)
Reactores Biológicos/microbiología , Nitrificación , Eliminación de Residuos Líquidos/métodos , Amoníaco , Biodegradación Ambiental , Biodiversidad , Filtración/instrumentación , Filtración/métodos , Residuos de Alimentos , Consorcios Microbianos/genética , Microscopía Electrónica de Rastreo , ARN Ribosómico 16S , Factores de Tiempo , Eliminación de Residuos Líquidos/instrumentación , Difracción de Rayos X
5.
Sci Total Environ ; 670: 149-157, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-30904641

RESUMEN

NaClO based chemically enhanced backwash (CEB) is often administered to maintain membrane permeability during the operation of MBR. However, the effect and working mechanism of NaClO concentrations in CEB were rarely investigated. The current investigation examined the changes in membrane resistance, permeate production and membrane morphology with or without CEB in an anammox MBR to reveal the scrubbing effect of different NaClO concentrations (0-596 mg/L). Good cleaning effect indicated by membrane fouling rate of 1.98-2.26 kPa/day and membrane permeate production of 80-88 L was observed when NaClO concentration of 149-596 mg/L was used. The best cleaning effect was observed when 298 mg/L of NaClO was used. To explore the mechanism of CEB action, backwashing foulants were also analyzed. Insoluble EPS transformed into soluble forms like S-EPS or SMP after the sludge was exposed to NaClO. The NaClO based CEB removed 112-675 mg of polysaccharide (PS)/m2 in foulants at NaClO concentration of 149-596 mg/L, which was significantly higher than the value obtained by pure water (35 mg PS/m2). The possible mechanisms behind the detachment of soluble PS seemed as oxidation and sterilization by NaClO. The current investigation provides useful guidelines on NaClO concentrations applied during CEB for anammox MBR.


Asunto(s)
Incrustaciones Biológicas , Membranas Artificiales , Hipoclorito de Sodio/química , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA