Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sensors (Basel) ; 23(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37631733

RESUMEN

Microneedle puncture is a standard minimally invasive treatment and surgical method, which is widely used in extracting blood, tissues, and their secretions for pathological examination, needle-puncture-directed drug therapy, local anaesthesia, microwave ablation needle therapy, radiotherapy, and other procedures. The use of robots for microneedle puncture has become a worldwide research hotspot, and medical imaging navigation technology plays an essential role in preoperative robotic puncture path planning, intraoperative assisted puncture, and surgical efficacy detection. This paper introduces medical imaging technology and minimally invasive puncture robots, reviews the current status of research on the application of medical imaging navigation technology in minimally invasive puncture robots, and points out its future development trends and challenges.


Asunto(s)
Ablación por Radiofrecuencia , Robótica , Punciones , Agujas , Tecnología
2.
Molecules ; 27(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36234855

RESUMEN

The maturity of Camellia oleifera fruit is one of the most important indicators to optimize the harvest day, which, in turn, results in a high yield and good quality of the produced Camellia oil. A hyperspectral imaging (HSI) system in the range of visible and near-infrared (400-1000 nm) was employed to assess the maturity stages of Camellia oleifera fruit. Hyperspectral images of 1000 samples, which were collected at five different maturity stages, were acquired. The spectrum of each sample was extracted from the identified region of interest (ROI) in each hyperspectral image. Spectral principal component analysis (PCA) revealed that the first three PCs showed potential for discriminating samples at different maturity stages. Two classification models, including partial least-squares discriminant analysis (PLS-DA) and principal component analysis discriminant analysis (PCA-DA), based on the raw or pre-processed full spectra, were developed, and performances were compared. Using a PLS-DA model, based on second-order (2nd) derivative pre-processed spectra, achieved the highest results of correct classification rates (CCRs) of 99.2%, 98.4%, and 97.6% in the calibration, cross-validation, and prediction sets, respectively. Key wavelengths selected by PC loadings, two-dimensional correlation spectroscopy (2D-COS), and the uninformative variable elimination and successive projections algorithm (UVE+SPA) were applied as inputs of the PLS-DA model, while UVE-SPA-PLS-DA built the optimal model with the highest CCR of 81.2% in terms of the prediction set. In a confusion matrix of the optimal simplified model, satisfactory sensitivity, specificity, and precision were acquired. Misclassification was likely to occur between samples at maturity stages two, three, and four. Overall, an HSI with effective selected variables, coupled with PLS-DA, could provide an accurate method and a reference simple system by which to rapidly discriminate the maturity stages of Camellia oleifera fruit samples.


Asunto(s)
Camellia , Algoritmos , Frutas/química , Imágenes Hiperespectrales , Análisis de los Mínimos Cuadrados , Espectroscopía Infrarroja Corta/métodos , Máquina de Vectores de Soporte
3.
Br Poult Sci ; 58(6): 673-680, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28812373

RESUMEN

1. To evaluate the performance of visible and near-infrared (Vis/NIR) spectroscopic models for discriminating true pale, soft and exudative (PSE), normal and dark, firm and dry (DFD) broiler breast meat in different conditions of preprocessing methods, spectral ranges, characteristic wavelength selection and water-holding capacity (WHC) indexes were assessed. 2. Quality attributes of 214 intact chicken fillets (pectoralis major), such as lightness (L*), pH and WHC indicators including drip loss (DL), water gain and expressible fluid were measured. Fillets were grouped into PSE, normal and DFD categories based on combination of L*, pH and WHC threshold criteria. Classification models were developed using support vector machine based methods on characteristic wavelengths selected from the unprocessed or 2nd-derivative spectra, respectively, in three spectral subsets of 400-2500, 400-1100 and 1100-2500 nm. 3. Better classification of three meat groups was obtained based on unprocessed spectra (72-94%) than 2nd-derivative spectra (55-72%). The classification based on 400-2500 nm (91% average) and 400-1100 nm (89% average) performed better than that on 1100-2500 nm (78% average). In terms of the three different WHC indicators, the combination of L*, pH and DL produced better results than the other two groups, with recognition accuracy of 94.4% using 400-2500-nm range. 4. These analytical results suggest that for a better classification of true PSE, normal and DFD broiler breast meat with Vis/NIR spectra, unprocessed spectra wavelengths should be used, ranges of 400-1000 nm should be included in the data collection, and DL as an indicator of WHC might provide a better prediction model.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Carne/análisis , Músculos Pectorales/diagnóstico por imagen , Espectroscopía Infrarroja Corta/veterinaria , Animales , Pollos , Modelos Teóricos , Espectroscopía Infrarroja Corta/métodos
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(1): 75-9, 2017 01.
Artículo en Zh | MEDLINE | ID: mdl-30192483

RESUMEN

Camellia oleifera oil has the reputation of "oriental olive oil"; it is important to detect the adulterated camellia oleifera oil. In this paper, NIR spectra were used to detect camellia oleifera oil adulterated with sunflower oil. Camellia oleifera oil adulterated with varying mass fraction of sunflower oil were prepared, i. e., 11 samples in 0%~10% with the gradient of 1%, 6 samples in 15%~40% with the gradient of 5%, 6 samples in 50%~100% with the gradient of 10%, and all the samples were divided into four groups such as A(0%~5%), B(6%~10%), C(15%~40%) and D(50%~100%). A total of 207 absorbance spectra(1 000~2 500 nm) were acquired by sampling 9 times in each adulteration. Calibration set was consist of two-thirds of the spectra data in each group selected randomly, and the validation set was made up of the last spectral data. After removing the noise in both ends of the spectra, principal component analysis(PCA) was used to reduce the dimensionality, then the first four PCs were used to build the support vector machine (SVM) identification model, and the identification accuracies of 96.38% and 94.20% in calibration and validation set were obtained. Furthermore, five characteristic wavelengths (1 212, 1 705, 1 826, 1 905 and 2 148 nm) were selected based on the loading of the PCs, the peaks or troughs of the original spectra and the chemical functional groups they were corresponding to. A NIR simplified SVM identification model was built by them, and the identification accuracies were 94.20% and 92.75%. Overall, both NIR spectroscopy and NIR characteristic spectra can realize the identification of camellia oleifera oil adulterated with sunflower oil, and the characteristic wavelengths, selected in this study, provide a basis for the design of corresponding instrument.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124266, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38599024

RESUMEN

To efficiently detect the maturity stages of Camellia oleifera fruits, this study proposed a non-invasive method based on hyperspectral imaging technology. First, a portable hyperspectral imager was used for the in-field image acquisition of Camellia oleifera fruits at three maturity stages, and ten quality indexes were measured as reference standards. Then, factor analysis was performed to obtain the comprehensive maturity index (CMI) by analyzing the change trends and correlations of different indexes. To reduce the high dimensionality of spectral data, the successive projection algorithm (SPA) was employed to select effective feature wavelengths. The prediction models for CMI, including partial least squares regression (PLSR), support vector regression (SVR), extreme learning machine (ELM), and convolutional neural network regression (CNNR), were constructed based on full spectra and feature wavelengths; for CNNR, only the raw spectra were used as input. The SPA-CNNR model exhibited more promising performance (RP = 0.839, RMSEP = 0.261, and RPD = 1.849). Furthermore, PLS-DA models for maturity discrimination of Camellia oleifera fruits were developed using full wavelength, characteristic wavelengths and their fusion CMI, respectively. The PLS-DA model using the fused dataset achieved the highest maturity classification accuracy, with the best simplified model achieving 88.6 % accuracy in prediction set. This study indicated that a portable hyperspectral imager can be used for in-field determination of the internal quality and maturity stages of Camellia oleifera fruits. It provides strong support for non-destructive quality inspection and timely harvesting of Camellia oleifera fruits in the field.


Asunto(s)
Camellia , Frutas , Camellia/química , Camellia/crecimiento & desarrollo , Frutas/química , Frutas/crecimiento & desarrollo , Análisis de los Mínimos Cuadrados , Imágenes Hiperespectrales/métodos , Algoritmos , Redes Neurales de la Computación , Máquina de Vectores de Soporte
6.
Int J Food Microbiol ; 416: 110661, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38457888

RESUMEN

Aspergillus flavus and its toxic metabolites-aflatoxins infect and contaminate maize kernels, posing a threat to grain safety and human health. Due to the complexity of microbial growth and metabolic processes, dynamic mechanisms among fungal growth, nutrient depletion of maize kernels and aflatoxin production is still unclear. In this study, visible/near infrared (Vis/NIR) hyperspectral imaging (HSI) combined with the scanning electron microscope (SEM) was used to elucidate the critical organismal interaction at kernel (macro-) and microscopic levels. As kernel damage is the main entrance for fungal invasion, maize kernels with gradually aggravated damages from intact to pierced to halved kernels with A. flavus were cultured for 0-120 h. The spectral fingerprints of the A. flavus-maize kernel complex over time were analyzed with principal components analysis (PCA) of hyperspectral images, where the pseudo-color score maps and the loading plots of the first three PCs were used to investigate the dynamic process of fungal infection and to capture the subtle changes in the complex with different hardness of the maize matrix. The dynamic growth process of A. flavus and the interactions of fungus-maize complexes were explained on a microscopic level using SEM. Specifically, fungus morphology, e.g., hyphae, conidia, and conidiophore (stipe) was accurately captured on the microscopic level, and the interaction process between A. flavus and nutrient loss from the maize kernel tissues (i.e., embryo, and endosperm) was described. Furthermore, the growth stage discrimination models based on PLSDA with the results of CCRC = 100 %, CCRV = 97 %, CCRIV = 93 %, and the prediction models of AFB1 based on PLSR with satisfactory performance (R2C = 0.96, R2V = 0.95, R2IV = 0.93 and RPD = 3.58) were both achieved. In conclusion, the results from both macro-level (Vis/NIR-HSI) and micro-level (SEM) assessments revealed the dynamic organismal interactions in A. flavus-maize kernel complex, and the detailed data could be used for modeling, and quantitative prediction of aflatoxin, which would establish a theoretical foundation for the early detection of fungal or toxin contaminated grains to ensure food security.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Humanos , Aspergillus flavus/metabolismo , Zea mays/microbiología , Imágenes Hiperespectrales , Tecnología
7.
Foods ; 12(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569151

RESUMEN

The objective of this study was to evaluate the performance of near-infrared spectroscopy (NIRS) systems operated in dual band for the non-destructive measurement of the fat, protein, collagen, ash, and Na contents of soy sauce stewed meat (SSSM). Spectra in the waveband ranges of 650-950 nm and 960-1660 nm were acquired from vacuum-packed ready-to-eat samples that were purchased from 97 different brands. Partial least squares regression (PLSR) was employed to develop models predicting the five critical quality parameters. The results showed the best predictions were for the fat (Rp = 0.808; RMSEP = 2.013 g/kg; RPD = 1.666) and protein (Rp = 0.863; RMSEP = 3.372 g/kg; RPD = 1.863) contents, while barely sufficient performances were found for the collagen (Rp = 0.524; RMSEP = 1.970 g/kg; RPD = 0.936), ash (Rp = 0.384; RMSEP = 0.524 g/kg; RPD = 0.953), and Na (Rp = 0.242; RMSEP = 2.097 g/kg; RPD = 1.042) contents of the SSSM. The quality of the content predicted by the spectrum of 960-1660 nm was generally better than that for the 650-950 nm range, which was retained in the further prediction of fat and protein. To simplify the models and make them practical, regression models were established using a few wavelengths selected by the random frog (RF) or regression coefficients (RCs) method. Consequently, ten wavelengths (1048 nm, 1051 nm, 1184 nm, 1191 nm, 1222 nm, 1225 nm, 1228 nm, 1450 nm, 1456 nm, 1510 nm) selected by RF and eight wavelengths (1019 nm, 1097 nm, 1160 nm, 1194 nm, 1245 nm, 1413 nm, 1441 nm, 1489 nm) selected by RCs were individually chosen for the fat and protein contents to build multi-spectral PLSR models. New models led to the best predictive ability of Rp, RMSEP, and RPD of 0.812 and 0.855, 1.930 g/kg and 3.367 g/kg, and 1.737 and 1.866, respectively. These two simplified models both yielded comparable performances to their corresponding full-spectra models, demonstrating the effectiveness of these selected variables. The overall results indicate that NIRS, especially in the spectral range of 960-1660 nm, is a potential tool in the rapid estimation of the fat and protein contents of SSSM, while not providing particularly good prediction statistics for collagen, ash, and Na contents.

8.
Front Plant Sci ; 14: 1180203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332705

RESUMEN

Introduction: Anthracnose of banana caused by Colletotrichum species is one of the most serious post-harvest diseases, which can cause significant yield losses. Clarifying the infection mechanism of the fungi using non-destructive methods is crucial for timely discriminating infected bananas and taking preventive and control measures. Methods: This study presented an approach for tracking growth and identifying different infection stages of the C. musae in bananas using Vis/NIR spectroscopy. A total of 330 banana reflectance spectra were collected over ten consecutive days after inoculation, with a sampling rate of 24 h. The four-class and five-class discriminant patterns were designed to examine the capability of NIR spectra in discriminating bananas infected at different levels (control, acceptable, moldy, and highly moldy), and different time at early stage (control and days 1-4). Three traditional feature extraction methods, i.e. PC loading coefficient (PCA), competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA), combining with two machine learning methods, i.e. partial least squares discriminant analysis (PLSDA) and support vector machine (SVM), were employed to build discriminant models. One-dimensional convolutional neural network (1D-CNN) without manually extracted feature parameters was also introduced for comparison. Results: The PCA-SVM and·SPA-SVM models had good performance with identification accuracies of 93.98% and 91.57%, 94.47% and 89.47% in validation sets for the four- and five-class patterns, respectively. While the 1D-CNN models performed the best, achieving an accuracy of 95.18% and 97.37% for identifying infected bananas at different levels and time, respectively. Discussion: These results indicate the feasibility of identifying banana fruit infected with C. musae using Vis/NIR spectra, and the resolution can be accurate to one day.

9.
Sci Total Environ ; 819: 152063, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856286

RESUMEN

Straw returning is helpful to improve soil properties and realize the reutilization of agricultural waste. However, wheat straw returning may result in paddy water quality deterioration in rice-wheat rotation regions. This study conducted pot experiments of rice planting with different biochar application rates (0, 5, 20, and 40 t/hm2) under wheat straw returning conditions. The purposes are to investigate the applicability of biochar mixed with wheat straw returning to paddy fields and explore the effects of biochar on water quality, leaching losses of nitrogen (N) and phosphorus (P), and rice yield components. Results indicated that total straw returning reduced the water quality in paddy surface water and aggravated the leaching losses of N and P. Fortunately, the biochar application improved the negative effects caused by straw returning. 40 t/hm2 biochar mixed with straw returning significantly reduced the concentrations of COD and N in paddy surface water and N leaching loss than straw returning treatment (ST), decreased by 48.33%, 41.01%, and 45.73%, respectively. Meanwhile, applying biochar at a rate of 20 t/hm2 with straw returning is suitable to control the diffusion of P. In addition, the ST treatment had no significant effect on rice yield, while the proper application rate of biochar under straw returning condition can improve rice yield and promote N utilization. 20 t/hm2 biochar treatment is more effective to improving rice yield (16.89%) and N use efficiency (NUE) (10.14%). These findings can provide a new method to solve the negative effects of total straw returning on the water environment and rice growth and guide the utilization of straw resources in the rice-wheat rotation regions.


Asunto(s)
Oryza , Agricultura/métodos , Carbón Orgánico , Fertilizantes , Suelo , Triticum , Calidad del Agua
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 282: 121689, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-35914356

RESUMEN

Mutton kebab is an attractive type of meat product with high nutritional value, and is favored by consumers worldwide. However, mutton kebab is often subjected to adulteration due to its high price. Chicken, duck, and pork are frequently used as adulterated substitutes. The purpose of current study aims at developing a methodology based on hyperspectral imaging (HSI, 400-1000 nm) for identifying the authenticity of fresh and cooked mutton kebabs. Kebab samples were individually scanned using HSI system in their fresh and cooked states. Spectra of chicken, duck, pork, and mutton kebabs were first extracted from representative regions of interest (ROIs) identified in their calibrated hyperspectral images. After that, principal component analysis (PCA) was carried out, and results showed that the first three or two PCs were effective for identifying fresh or cooked samples of different meat species. Different effective modeling algorithms including k-nearest neighbor (KNN), partial least squares discriminant analysis (PLS-DA), and support vector machine (SVM) algorithms combined with different preprocessing methods were employed to develop classification models. Performances exhibited that PLS-DA models using raw spectra outperformed the KNN and SVM models, and the accuracies reached both 100 % in prediction sets for fresh and cooked meat kebabs, respectively. Moreover, compared to iteratively variable subset optimization (IVSO), random frog (RF), and successive projections algorithm (SPA) algorithms, the PC loadings successfully screened 14 and 8 effective wavelengths for fresh and cooked meat kebabs, respectively, from the complex original full-band wavelengths. The PC-PLS-DA models showed the optimal predicted performances with overall classification accuracies of 97.5 % and 100 %, sensitivity values of 1.00 and 1.00, specificity values of 0.97 and 1.00, precisions of 0.91 and 1.00, for fresh and cooked mutton kebabs, respectively. Furthermore, the visualization of classification maps confirmed the experimental results intuitively. Overall, it was evident that HSI showed immense potential to identify the authenticity of fresh and cooked mutton kebabs when substituted by different meats including chicken, duck, and pork.


Asunto(s)
Imágenes Hiperespectrales , Espectroscopía Infrarroja Corta , Algoritmos , Animales , Pollos , Análisis Discriminante , Estudios de Factibilidad , Análisis de los Mínimos Cuadrados , Espectroscopía Infrarroja Corta/métodos , Máquina de Vectores de Soporte
11.
Foods ; 10(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34574237

RESUMEN

Authentication assurance of meat or meat products is critical in the meat industry. Various methods including DNA- or protein-based techniques are accurate for assessing meat authenticity, however, they are destructive, expensive, or laborious. This study explores the feasibility of chemometrics in tandem with hyperspectral imaging (HSI) for identifying raw and cooked mutton rolls substitution by pork and duck rolls. Raw or cooked samples (n = 180) of three meat species were prepared to collect hyperspectral images in range of 400-1000 nm. Spectra were extracted from representative regions of interest (ROIs), and spectral principal component analysis (PCA) revealed that PC1 and PC2 were effective for the identification. Different methods including standard normal variable (SNV), first and second derivatives, and normalization were individually employed for spectral preprocessing, and modeling methods of partial least squares-discriminant analysis (PLS-DA) and support vector machines (SVM) were also individually applied to develop classification models for both the raw and the cooked. Results showed that PLS-DA model developed by raw spectra presented the highest 100% correct classification rate (CCR) of success in all sets. After that, effective wavelengths selected by successive projections algorithm (SPA) built optimal simplified models which didn't influence the modeling results compared with full spectra regardless of the meat roll states. Therefore, SPA-PLS-DA models were subsequently used to visualize the raw and cooked meat rolls classification. As a consequence, the general meat species of both raw and cooked meat rolls were readily discernible in pixel-wise manner by generating classification maps. The results showed that HSI combined with chemometrics can be used to identify the authentication of raw and cooked mutton rolls substituted by pork and duck rolls accurately. This promising methodology provides a reference which can be extended to the classification or grading of other meat rolls.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119307, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33348095

RESUMEN

Hyperspectral imaging (HSI) technique was investigated to explore a feasible protocol for detecting the potential offal (lung) adulteration in ground pork. Tested samples (176 adulterated and 2 controls) were first prepared with adulterant of ground lung in range of 0%-100% (w/w) at 10% intervals. After hyperspectral images were acquired and calibrated in reflectance mode (400-1000 nm), full spectra were extracted from identified regions of interests (ROIs) and then transformed into absorbance and Kubelka-Munck spectral units, respectively. Partial least squares regression (PLSR) models based on full spectra showed that raw reflectance spectra with no preprocessings performed best with coefficient of determination (Rp2) of 0.98, root mean square error (RMSEP) of 4.25%, and ratio performance deviation (RPD) of 7.53 in prediction set. To reduce the high dimensionality of spectra, data was further explored using principal component loadings, two-dimensional correlation spectroscopy (2D-COS), and regression coefficients (RC), respectively. The optimal performance of established simplified PLSR model were acquired using eleven featured wavelengths selected by PC loadings with Rp2 of 0.98, RMSEP of 4.47% and RPD of 7.16. Finally, the limit of detection (LOD) was calculated to be a satisfactory 7.58%, and readily discernible visualization procedure using preferred simplified PLSR model yielded satisfactory spatial distribution of adulteration situation. Control samples with known distribution were also visualized to successfully prove the validity. Consequently, this research offers an alternative assay for visually and rapidly detecting offal of lung adulteration in ground pork.


Asunto(s)
Carne de Cerdo , Carne Roja , Animales , Imágenes Hiperespectrales , Análisis de los Mínimos Cuadrados , Carne/análisis , Carne Roja/análisis , Espectroscopía Infrarroja Corta , Porcinos
13.
Foods ; 9(2)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041126

RESUMEN

Minced pork jowl meat, also called the sticking-piece, is commonly used to be adulterated in minced pork, which influences the overall product quality and safety. In this study, hyperspectral imaging (HSI) methodology was proposed to identify and visualize this kind of meat adulteration. A total of 176 hyperspectral images were acquired from adulterated meat samples in the range of 0%-100% (w/w) at 10% increments using a visible and near-infrared (400-1000 nm) HSI system in reflectance mode. Mean spectra were extracted from the regions of interests (ROIs) and represented each sample accordingly. The performance comparison of established partial least square regression (PLSR) models showed that spectra pretreated by standard normal variate (SNV) performed best with Rp2 = 0.9549 and residual predictive deviation (RPD) = 4.54. Furthermore, functional wavelengths related to adulteration identification were individually selected using methods of principal component (PC) loadings, two-dimensional correlation spectroscopy (2D-COS), and regression coefficients (RC). After that, the multispectral RC-PLSR model exhibited the most satisfactory results in prediction set that Rp2 was 0.9063, RPD was 2.30, and the limit of detection (LOD) was 6.50%. Spatial distribution was visualized based on the preferred model, and adulteration levels were clearly discernible. Lastly, the visualization was further verified that prediction results well matched the known distribution in samples. Overall, HSI was tested to be a promising methodology for detecting and visualizing minced jowl meat in pork.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 213: 118-126, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30684880

RESUMEN

White striping (WS), an emerging muscle myopathy in poultry industry, is gaining increasing attention globally. In this study, visible and near-infrared hyperspectral imaging (HSI, 400-1000 nm) was investigated for developing an optical sensing technique to differentiate WS broiler breast fillets (pectoralis major) from normal fillets. The minimum noise fraction (MNF), followed by an inverse MNF (IMNF), was conducted to improve the signal-to-noise ratio of hyperspectral images during the pre-processing process. Three regions of interest (ROIs) were selected at cranial, middle and caudal locations within each fillet image. Spectral principal component analysis (PCA) revealed that PC2 and PC3 were effective for the differentiation and key wavelengths (450, 492, 541, 581, 629, 869 and 980 nm) were selected from the corresponding PC loadings. Spatial texture features on corresponding score images were obtained using gray level co-occurrence matrix (GLCM) and grayscale histogram statistics (GHS), respectively. Partial least squares discriminant analysis (PLS-DA) models were evaluated with various inputs including spectral (full and key wavelengths), textural and fused features. GLCM features improved performance of multispectral imaging with the highest correct classification rate (CCR) of 91.7%, AUC value (0.917), and Kappa coefficient (0.833) for prediction set. Considering the complexity and heterogeneity of meat samples at different locations, the optimal sampling location was also analyzed and results provided the evidence that the cranial location worked most effectively for the differentiation between normal and WS samples. Overall, results confirmed the great potential of HSI in range of 400-1000 nm in differentiation between normal and WS chicken breast meat.


Asunto(s)
Pollos/anatomía & histología , Imagenología Tridimensional , Carne/análisis , Espectroscopía Infrarroja Corta/métodos , Tórax/anatomía & histología , Algoritmos , Animales , Análisis Discriminante , Femenino , Análisis de los Mínimos Cuadrados , Análisis de Componente Principal
15.
Food Chem ; 244: 184-189, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29120769

RESUMEN

In this study visible/near-infrared spectroscopy (Vis/NIRS) was evaluated to rapidly classify intact chicken breast fillets. Five principal components (PC) were extracted from reference quality traits (L∗, pH, drip loss, expressible fluid, and salt-induced water gain). A quality grades classification method by PC1 score was proposed. With this method, 150 chicken fillets were properly classified into three quality grades, i.e., DFD (dark, firm and dry), normal, and PSE (pale, soft and exudative). Furthermore, PC1 score could be predicted using partial least squares regression (PLSR) model based on Vis/NIRS (R2p = 0.78, RPD = 1.9), without the measurement of any quality traits. Thresholds of PC1 classification method were applied to classify the predicted PC1 score values of each fillet into three quality grades. The classification accuracy of calibration and prediction set were 85% and 80%, respectively. Results revealed that PC1 score classification method is feasible, and with Vis/NIRS, this method could be rapidly implemented.


Asunto(s)
Calidad de los Alimentos , Glándulas Mamarias Animales/química , Carne , Análisis de Componente Principal , Espectroscopía Infrarroja Corta , Animales , Calibración , Pollos , Color , Análisis de los Mínimos Cuadrados , Fenotipo , Factores de Tiempo
16.
Meat Sci ; 139: 82-90, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29413681

RESUMEN

The aim of this study was to classify and visualize tenderness of intact fresh broiler breast fillets using hyperspectral imaging (HSI) technique. A total of 75 chicken fillets were scanned by HSI system of 400-1000nm in reflectance mode. Warner-Bratzler shear force (WBSF) value was used as reference tenderness indicator and fillets were grouped into least, moderately and very tender categories accordingly. To extract additional image textural features, principal component analysis (PCA) transform of images were conducted and gray level co-occurrence matrix (GLCM) analysis was implemented in region of interests (ROIs) on first three PC score images. Partial least square discriminant analysis (PLS-DA) or radial basis function-support vector machine (RBF-SVM) was developed for predicting tenderness based on full wavelengths (CCR=0.92), selected wavelengths (CCR=0.84), textural or combined data (CCR=0.88). Classification maps were created by pixels prediction in images and breast fillet tenderness was readily discernible. Overall, HSI technique is a promising methodology for predicting tenderness of intact fresh broiler breast meat.


Asunto(s)
Pollos , Carne/análisis , Resistencia al Corte , Espectroscopía Infrarroja Corta/métodos , Animales , Músculo Esquelético , Análisis de Componente Principal , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA