Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genomics ; 116(2): 110811, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387766

RESUMEN

Sugarcane molasses is one of the main raw materials for bioethanol production, and Saccharomyces cerevisiae is the major biofuel-producing organism. In this study, a batch fermentation model has been used to examine ethanol titers of deletion mutants for all yeast nonessential genes in this yeast genome. A total of 42 genes are identified to be involved in ethanol production during fermentation of sugarcane molasses. Deletion mutants of seventeen genes show increased ethanol titers, while deletion mutants for twenty-five genes exhibit reduced ethanol titers. Two MAP kinases Hog1 and Kss1 controlling the high osmolarity and glycerol (HOG) signaling and the filamentous growth, respectively, are negatively involved in the regulation of ethanol production. In addition, twelve genes involved in amino acid metabolism are crucial for ethanol production during fermentation. Our findings provide novel targets and strategies for genetically engineering industrial yeast strains to improve ethanol titer during fermentation of sugarcane molasses.


Asunto(s)
Saccharomycetales , Saccharum , Fermentación , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharum/genética , Saccharum/metabolismo , Saccharomycetales/metabolismo , Sistema de Señalización de MAP Quinasas , Melaza , Aminoácidos
2.
Cell Commun Signal ; 21(1): 237, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723578

RESUMEN

As one of the most important human fungal pathogens, Candida albicans senses and adapts to host niches with different pH values through the pH-responsive Rim101 pathway. Its transcription factor Rim101 activates the expression of alkaline pH-induced genes including PHR1 that encodes a glycosylphosphatidylinsitol-anchored ß(1,3)-glucanosyltransferase critical for hyphal wall formation. The calcium/calcineurin signaling pathway is mediated by the transcription factor Crz1 in yeasts and other lower eukaryotes. Here we report that deletion of PHR1 leads to calcium sensitivity of C. albicans cells. In addition, expression of Phr1 is induced by calcium stress and under the control of Crz1 in C. albicans. EMSA assay demonstrates that Crz1 binds to one CDRE element in the PHR1 promoter. Alkaline treatment induces two species of glycosylated Phr1 proteins with different degrees of glycosylation, which is independent of Crz1. In contrast, only one species of Phr1 protein with a low degree of glycosylation is induced by calcium stress in a Crz1-dependent fashion. Therefore, we have provided an evidence that regulation of cell wall remodeling is integrated through differential degrees of Phr1 glycosylation by both the pH-regulated Rim101 pathway and the calcium/calcineurin signaling pathway in C. albicans. Video Abstract.


Asunto(s)
Calcio , Candida albicans , Proteínas Fúngicas , Factores de Transcripción , Calcineurina , Regulación de la Expresión Génica
3.
Protein Expr Purif ; 208-209: 106294, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37150231

RESUMEN

Chitin is a polymer of ß-1,4-linked N-acetylglucosamine (GlcNAc) and plays a central role in the assembly of the fungal cell wall. Chitinases are hydrolytic enzymes that break down glycosidic bonds in the chitin. Chitinases are classified into three categories, endochitinases, exochitinases and N-acetylglucosaminases, according to the manner in which the enzyme cleaves the chitin polymer. Saccharomyces cerevisiae has two chitinase-encoding genes, CTS1 and CTS2. However, whether Cts2p shows a chitinase activity remains unknown. In this study, we have cloned, expressed and purified the recombinant Cts2p protein from bacterial cells. We have demonstrated that Cts2p has a higher chitobiosidase (exochitinase) activity than endochitinase activity, but no N-acetylglucosaminase activity. The optimal temperature for the chitobiosidase activity of Cts2p is 37 °C.


Asunto(s)
Quitinasas , Saccharomycetales , Saccharomycetales/genética , Quitinasas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Quitina/metabolismo , Clonación Molecular
4.
Protein Expr Purif ; 211: 106343, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37536579

RESUMEN

As one of the major components in the fungal cell wall, chitin is a polymer of ß-1,4-linked N-acetylglucosamine. Chitinases are hydrolytic enzymes that break down glycosidic bonds in the chitin. The human fungal pathogen Candida albicans has three chitinase-encoding genes, CaCHT1, CaCHT2 and CaCHT3. The CaCHT4 gene encodes a protein with the glycoside hydrolase family GH18 domain, Glyco_18, which suggests that CaCht4 might be a chitinase. In the present study, we have cloned, expressed and purified the N-terminally His6-tagged CaCht4 protein from bacterial cells. Further biochemical characterization has shown that this recombinant CaCht4 protein shows both exochitinase (chitobiosidase) and endochitinase activities, but has no N-acetylglucosaminase activity. The optimal temperature for the exochitinase activity of CaCht4 is 55 °C. Taken together, these data support that the CaCHT4 gene encodes a chitinase. Our finding provides a basis for us to understand the biological functions of the CaCHT4 gene in C. albicans.


Asunto(s)
Candida albicans , Quitinasas , Humanos , Candida albicans/genética , Quitinasas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Clonación Molecular , Quitina/metabolismo
5.
Genomics ; 112(2): 1674-1679, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31618673

RESUMEN

The budding yeast Saccharomyces cerevisiae remains a central position among biofuel-producing organisms. However, the gene expression regulatory networks behind the ethanol fermentation is still not fully understood. Using a static fermentation model, we have examined the ethanol yields on biomass of deletion mutants for all yeast nonessential genes encoding transcription factors and their related proteins in the yeast genome. A total of 20 (about 10%) transcription factors are identified to be regulators of ethanol production during fermentation. These transcription factors are mainly involved in cell cycling, chromatin remodeling, transcription, stress response, protein synthesis and lipid synthesis. Our data provides a basis for further understanding mechanisms regulating ethanol production in budding yeast.


Asunto(s)
Ensamble y Desensamble de Cromatina , Etanol/metabolismo , Fermentación/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Biochem Biophys Res Commun ; 532(3): 453-458, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32891431

RESUMEN

In Saccharomyces cerevisiae, the Rim101 pathway senses extracellular pH changes through a complex consisted of Rim8, Rim9 and Rim21 at the plasma membrane. Activation of this sensor complex induces a proteolytical complex composed of Rim13 and Rim20 and leads to the C-terminal processing and activation of the transcription factor Rim101. Deletion mutants for RIM8, RIM9, RIM13, RIM20, RIM21 and RIM101 causes yeast cells to be sensitive to calcium stress, but how they regulate calcium sensitivity remain unknown. Here we show that deletion mutations of these six Rim101 pathway components elevate the activation level of the calcium/calcineurin signaling and the transcriptional expression level of the vacuolar calcium pump gene PMC1, but lead to a reduction in transcriptional expression level of the ER/Golgi calcium pump gene PMR1 in yeast cells. Deletion of NRG1, encoding one of the repression targets of Rim101, rescues the transcriptional expression of PMR1 in all these mutants. Furthermore, ectopic expression of a constitutively active form of Rim101 or further deletion of NRG1 suppresses the calcium sensitivity of these six deletion mutants. Therefore, the pH-sensing Rim101 pathway positively regulates the transcriptional expression of PMR through its downstream target Nrg1 to affect the calcium sensitivity of yeast cells.


Asunto(s)
ATPasas Transportadoras de Calcio/genética , Chaperonas Moleculares/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Calcio/metabolismo , Señalización del Calcio/genética , Ciclosporina/farmacología , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Mutación , Proteínas Represoras/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
Cell Commun Signal ; 18(1): 1, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900175

RESUMEN

BACKGROUND: The calcium/calcineurin signaling pathway is mediated by the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeasts and other lower eukaryotes. A previous microarray analysis identified a putative Crz1-binding motif in promoters of its target genes in Candida albicans, but it has not been experimentally demonstrated. METHODS: An inactivation mutant for CaCRZ1 was generated through CRISPR/Cas9 approach. Transcript profiling was carried out by RNA sequencing of the wild type and the inactivation mutant for CaCRZ1 in response to 0.2 M CaCl2. Gene promoters were scanned by the online MEME (Multiple Em for Motif Elicitation) software. Gel electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis were used for in vitro and in vivo CaCrz1-binding experiments, respectively. RESULTS: RNA sequencing reveals that expression of 219 genes is positively, and expression of 59 genes is negatively, controlled by CaCrz1 in response to calcium stress. These genes function in metabolism, cell cycling, protein fate, cellular transport, signal transduction, transcription, and cell wall biogenesis. Forty of these positively regulated 219 genes have previously been identified by DNA microarray analysis. Promoter analysis of these common 40 genes reveals a consensus motif [5'-GGAGGC(G/A)C(T/A)G-3'], which is different from the putative CaCrz1-binding motif [5'-G(C/T)GGT-3'] identified in the previous study, but similar to Saccharomyces cerevisiae ScCrz1-binding motif [5'-GNGGC(G/T)CA-3']. EMSA and ChIP assays indicate that CaCrz1 binds in vitro and in vivo to both motifs in the promoter of its target gene CaUTR2. Promoter mutagenesis demonstrates that these two CaCrz1-binding motifs play additive roles in the regulation of CaUTR2 expression. In addition, the CaCRZ1 gene is positively regulated by CaCrz1. CaCrz1 can bind in vitro and in vivo to its own promoter, suggesting an autoregulatory mechanism for CaCRZ1 expression. CONCLUSIONS: CaCrz1 differentially binds to promoters of its target genes to regulate their expression in response to calcium stress. CaCrz1 also regulates its own expression through the 5'-TGAGGGACTG-3' site in its promoter. Video abstract.


Asunto(s)
Candida albicans/genética , Candida albicans/patogenicidad , Proteínas Fúngicas/genética , Genes Fúngicos , Motivos de Nucleótidos/genética , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Humanos , Modelos Biológicos , Mutación/genética , Fenotipo , Unión Proteica , Transcriptoma/genética
8.
Genomics ; 111(6): 1226-1230, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30102968

RESUMEN

Through a genetic screen we have identified 21 genes whose inactivation renders Candida albicans cells sensitive to high levels of extracellular calcium. These genes are involved in the tricarboxylic acid cycle, cell wall integrity pathway, cytokinesis, intracellular pH homeostasis, magnesium transport, as well as DNA damage response and repair processes. The calcium sensitivity due to inactivation of nine of these genes can be partially or completely suppressed by cyclosporine A, an inhibitor of calcineurin. Therefore, the calcium sensitivity of nearly a half of these 21 mutations is at least partially due to the activation of calcium/calcineurin signaling. Our work provides a basis for further understanding the regulation of calcium homeostasis in this important human fungal pathogen.


Asunto(s)
Calcio/metabolismo , Candida albicans/genética , Inhibidores de la Calcineurina/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Pared Celular/genética , Ciclo del Ácido Cítrico/genética , Ciclosporina/farmacología , Citocinesis/genética , Concentración de Iones de Hidrógeno , Mutación , Tetraciclina/farmacología
9.
FEMS Yeast Res ; 19(3)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31004489

RESUMEN

Cdc50 is the non-catalytic subunit of the flippase that establishes phospholipid asymmetry in membranes and functions in vesicle-mediated trafficking in Saccharomyces cerevisiae. Here, we have identified the homologous gene CaCDC50 that encodes a protein of 396 amino acids with two conserved transmembrane domains in Candidaalbicans. Deletion of CaCDC50 results in C. albicans cells becoming sensitive to the antifungal drugs azoles, terbinafine and caspofungin, as well as to the membrane-perturbing agent sodium dodecyl sulfate. We also show that CaCDC50 is involved in both endocytosis and vacuolar function. CaCDC50 confers tolerance to high concentrations of cations, although it is not required for osmolar response. Moreover, deletion of CaCDC50 leads to severe defects in hyphal development of C. albicans cells and highly attenuated virulence in the mouse model of systemic infection. Therefore, CaCDC50 regulates cellular responses to antifungal drugs, cell membrane stress, endocytosis, filamentation and virulence in the human fungal pathogen C. albicans.


Asunto(s)
Candida albicans/enzimología , Candida albicans/genética , Farmacorresistencia Fúngica/genética , Endocitosis , Proteínas Fúngicas/genética , Virulencia , Antifúngicos/farmacología , Azoles/farmacología , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Hifa/crecimiento & desarrollo
10.
Cell Commun Signal ; 17(1): 7, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30665402

RESUMEN

Through a genome-wide screen we have identified calcium-tolerant deletion mutants for five genes in the budding yeast Saccharomyces cerevisiae. In addition to CNB1 and RCN1 that are known to play a role in the calcium signalling pathway, the protein kinase gene CMK2, the sphingolipid homeostasis-related gene ORM2 and the gene SIF2 encoding the WD40 repeat-containing subunit of Set3C histone deacetylase complex are involved in the calcium sensitivity of yeast cells to extracellular calcium. Cmk2 and the transcription factor Crz1 have opposite functions in the response of yeast cells to calcium stress. Deletion of CMK2 elevates the level of calcium/calcineurin signalling and increases the expression level of PMR1 and PMC1, which is dependent on Crz1. Effects of Cmk2 on calcium sensitivity and calcium/calcineurin signalling are dependent on its kinase activity. Therefore, Cmk2 is a negative feedback controller of the calcium/calcineurin signalling pathway. Furthermore, the cmk2 crz1 double deletion mutant is more resistant than the crz1 deletion mutant, suggesting that Cmk2 has an additional Crz1-independent role in promoting calcium tolerance.


Asunto(s)
Calcineurina/metabolismo , Calcio/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biocatálisis , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Eliminación de Gen , Modelos Biológicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fenotipo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Fungal Genet Biol ; 115: 1-8, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29621626

RESUMEN

Pmr1 is the Golgi/ER calcium pump, while Rch1 is a newly identified negative regulator of calcium influx in the plasma membrane of yeast cells. We show here that CaRch1 plays a dominant role over CaPmr1 in response of Candida albicans to SDS and tunicamycin stresses, while CaPmr1 has a major role in cell wall stress. Deletion of CaRCH1 increases the calcium/calcineurin signaling level in cells lacking CaPMR1. Calcineurin function is required for the role of CaRch1 in SDS stresses, while it is required for the function of CaPmr1 under all conditions examined. Disruption of CaRCH1 alone does not reduce the cell wall chitin, mannan or ß-glucan content, but lack of CaRCH1 slightly decreases the chitin content of cells lacking CaPMR1. Furthermore, CaRch1 and CaPmr1 have an additive effect on filamentation of C. albicans cells in vitro. Cells lacking both CaRCH1 and CaPMR1 and cells lacking CaPMR1 alone show a similar degree of virulence attenuation, being much more attenuated than cells lacking CaRCH1 alone. Therefore, CaRch1 genetically interacts with CaPmr1 in the regulation of in vitro filamentation in C. albicans.


Asunto(s)
Candida albicans/genética , Citoesqueleto/genética , Endorribonucleasas/genética , alfa Carioferinas/genética , Calcio/metabolismo , Candidiasis/genética , Candidiasis/microbiología , Pared Celular/genética , Pared Celular/metabolismo , Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica , Aparato de Golgi/genética , Humanos , Estrés Fisiológico/genética
12.
BMC Microbiol ; 18(1): 49, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29866033

RESUMEN

BACKGROUND: Calcium-permeable transient receptor potential (TRP) channels exist in eukaryotic cells from yeasts to animals and plants. and they act as sensors for various stresses. Arabidopsis thaliana calcium permeable stress-gated cation channel 1 (AtCSC1) was the first plant calcium-permeable TRP to be described and can be activated by hyperosmotic shock. Candida albicans CaPHM7 is one of the sequence homologs of AtCSC1, but its function remains unknown. RESULTS: We show here that CaPhm7 is localized to the plasma membrane in both the yeast and hyphal cells of C. albicans. C. albicans cells lacking CaPHM7 are sensitive to SDS and ketoconazole but tolerant to rapamycin and zinc. In addition, deletion of CaPHM7 leads to a filamentation defect, reduced colony growth and attenuated virulence in the mouse model of systemic infection. CONCLUSIONS: CaPhm7 is involved in the regulation of ion homeostasis, drug tolerance, filamentation and virulence in this important human fungal pathogen. CaPhm7 could be a potential target of antifungal drugs.


Asunto(s)
Candida albicans/patogenicidad , Candidiasis/microbiología , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Modelos Animales de Enfermedad , Farmacorresistencia Fúngica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Homeostasis , Hifa , Cetoconazol/farmacología , Ratones , Sirolimus/farmacología , Dodecil Sulfato de Sodio/farmacología , Virulencia , Zinc/farmacología
13.
FEMS Yeast Res ; 18(6)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982370

RESUMEN

Maf1 is a repressor of RNA polymerase (Pol) III transcription for tRNA. Nutrient deprivation and environmental stress repress Pol III transcription through Maf1 in Saccharomyces cerevisiae. The sole Candida albicans homolog CaMaf1 is a protein of 380 amino acids with conserved domains and motifs of the eukaryotic Maf1 family. Here, we show that C. albicans cells lacking CaMAF1 show elevated levels of tRNA. Deletion of CaMAF1 increases the sensitivity of C. albicans cells to lithium cation and SDS as well as tolerance to rapamycin and azole. In addition, deletion of CaMAF1 reduces the level of filamentation and alters the surface morphology of colonies. CaMaf1 is localized in the nucleus of log-phase growing cells. However, a dynamic change of subcellular localization of CaMaf1 exists during serum-induced morphological transition, with CaMaf1 being localized in the nuclei of cells with germ tubes and short filaments but outside of the nuclei of cells with long filaments. In addition, CaMaf1 is required for rapamycin-induced repression of CaERG20, encoding the farnesyl pyrophosphate synthetase involved in ergosterol biosynthesis. Therefore, CaMaf1 plays a role as a general repressor of Pol III transcription in C. albicans.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/genética , Tolerancia a Medicamentos/genética , Proteínas Fúngicas/metabolismo , ARN Polimerasa III/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Candida albicans/citología , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Geraniltranstransferasa/genética , Pruebas de Sensibilidad Microbiana , ARN de Transferencia/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
15.
Cell Commun Signal ; 16(1): 33, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29954393

RESUMEN

BACKGROUND: Saccharomyces cerevisiae ScGdt1 and mammalian TMEM165 are two members of the UPF0016 membrane protein family that is likely to form a new group of Ca2+/H+ antiporter and/or a Mn2+ transporter in the Golgi apparatus. We have previously shown that Candida albicans CaGDT1 is a functional ortholog of ScGDT1 in the response of S. cerevisiae to calcium stress. However, how CaGdt1 together with the Golgi calcium pump CaPmr1 regulate calcium homeostasis and cell wall integrity in this fungal pathogen remains unknown. METHODS: Chemical sensitivity was tested by dilution assay. Cell survival was examined by measuring colony-forming units and staining with Annexin V-FITC and propidium iodide. Calcium signaling was examined by expression of downstream target gene CaUTR2, while cell wall integrity signaling was revealed by detection of phosphorylated Mkc1 and Cek1. Subcellular localization of CaGdt1 was examined through direct and indirect immunofluorescent approaches. Transcriptomic analysis was carried out with RNA sequencing. RESULTS: This study shows that Candida albicans CaGDT1 is also a functional ortholog of ScGDT1 in the response of S. cerevisiae to cell wall stress. CaGdt1 is localized in the Golgi apparatus but at distinct sites from CaPmr1 in C. albicans. Loss of CaGDT1 increases the sensitivity of cell lacking CaPMR1 to cell wall and ER stresses. Deletion of CaGDT1 and/or CaPMR1 increases calcium uptake and activates the calcium/calcineurin signaling. Transcriptomic profiling reveals that core functions shared by CaGdt1 and CaPmr1 are involved in the regulation of cellular transport of metal ions and amino acids. However, CaGdt1 has distinct functions from CaPmr1. Chitin synthase gene CHS2 is up regulated in all three mutants, while CHS3 is only up regulated in the pmr1/pmr1 and the gdt1/gdt1 pmr1/pmr1 mutants. Five genes (DIE2, STT3, OST3, PMT1 and PMT4) of glycosylation pathway and one gene (SWI4) of the cell wall integrity (CWI) pathway are upregulated due to deletion of CaGDT1 and/or CaPMR1. Consistently, deletion of either CaPMR1 or CaGDT1 activates the CaCek1-mediated CWI signaling in a cell wall stress-independent fashion. Calcineurin function is required for the integrity of the cell wall and vacuolar compartments of cells lacking both GDT1 and CaPMR1. CONCLUSIONS: CaPmr1 is the major player in the regulation of calcium homeostasis and cell wall stress, while CaGdt1 plays a compensatory role for CaPmr1 in the Golgi compartment in C. albicans.


Asunto(s)
Señalización del Calcio , Candida albicans/citología , Candida albicans/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Transporte Biológico , Calcineurina/metabolismo , Calcio/metabolismo , Candida albicans/genética , Estrés del Retículo Endoplásmico , Proteínas Fúngicas/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Glicosilación , Aparato de Golgi/metabolismo
16.
Can J Microbiol ; 64(10): 727-731, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29791811

RESUMEN

Transient receptor potential (TRP) channels, an ancient family of cation channels, are highly conserved in eukaryotes and play various physiological functions, ranging from sensation of ion homeostasis to reception of pain and vision. Calcium-permeable TRP channels have been identified from the plant Arabidopsis thaliana (AtCsc1) and the budding yeast Saccharomyces cerevisiae (ScCsc1). In this study, we characterized the functions of the Csc1 homolog, orf19.4805, in Candida albicans. Orf19.4805 is a protein of 866 amino acids and 11 transmembrane domains, which shares 49% identity (69% similarity) in amino acid sequence with ScRsn1. Here, we demonstrate that deletion of the orf19.4805 gene causes C. albicans cells to be sensitive to SDS (sodium dodecyl sulfate) and antifungal drugs, and tolerance to zinc, manganese, and cadmium ions. Candida albicans cells lacking orf19.4805 show a defect in filamentation in vitro. Therefore, orf19.4805 is involved in the regulation of cation homeostasis and filamentation in C. albicans.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/fisiología , Calcio/farmacología , Candida albicans/genética , Farmacorresistencia Fúngica , Genes Fúngicos/fisiología , Canales de Potencial de Receptor Transitorio/genética , Zinc/farmacología
17.
Int J Med Microbiol ; 307(8): 471-480, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28967545

RESUMEN

Protein phosphatase PP4 is composed of one catalytic subunit and one or two regulatory subunits and conserved in eukaryotic cells. The catalytic subunit CaPph3 forms a complex with the regulatory subunit CaPsy2, which dephosphorylates activated CaRad53 during adaptation to and recovery from MMS-mediated DNA damage. We show here that the N-terminal Y33A mutation of CaPsy2 blocks the interaction between CaPph3 and CaRad53, the deactivation of CaRad53 and the morphologic switch in recovery from genotoxic stress. In Saccharomyces cerevisiae, the ScPph3-ScPsy2-ScPsy4 complex functions to dephosphorylate γH2A. In this study, we show that CaPsy4 is a functional homolog of ScPsy4 and not involved in the deactivation of CaRad53 or CaHta, the ortholog of H2A. However, deletion of CaPSY4 causes C. albicans cells a sensitivity to genotoxic reagents and a defect in DNA damage-induced filamentation. CaPsy4 interacts with both CaPph3 and CaPsy2, but the function of CaPsy4 is independent of CaPph3 and CaPsy2 in response to genotoxic stress. C. albicans cells lacking CaPPH3, CaPSY2 or CaPSY4, and C. albicans cells carrying the Y33A mutation of CaPSY2, show increased virulence to mice. Therefore, PP4 plays a negative role in regulating the DNA damage-induced filamentation and the virulence in C. albicans.


Asunto(s)
Candida albicans/enzimología , Candida albicans/patogenicidad , Daño del ADN , Proteínas Fúngicas/metabolismo , Hifa/crecimiento & desarrollo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Candida albicans/crecimiento & desarrollo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Masculino , Ratones Endogámicos BALB C , Fosfoproteínas Fosfatasas/genética , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Virulencia
18.
FEMS Yeast Res ; 16(3)2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26994103

RESUMEN

Nickel is one of the toxic environment metal pollutants and is linked to various human diseases. In this study, through a functional genomics approach we have identified 16 nickel-sensitive and 22 nickel-tolerant diploid deletion mutants of budding yeast genes, many of which are novel players in the regulation of nickel homeostasis. The 16 nickel-sensitive mutants are of genes mainly involved in the protein folding, modification and destination and the cellular transport processes, while the 22 nickel-tolerant mutants are of genes encoding components of ESCRT complexes as well as protein factors involved in both the cell wall integrity maintenance and the vacuolar protein sorting process. In consistence with their phenotypes, most of these nickel-sensitive mutants show reduced intracellular nickel contents, while the majority of these nickel-tolerant mutants show elevated intracellular nickel contents, as compared to the wild type in response to nickel stress. Our data provides a basis for our understanding the regulation of nickel homeostasis and molecular mechanisms of nickel-induced human pathogenesis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Iones/toxicidad , Níquel/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Tolerancia a Medicamentos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Eliminación de Gen , Pruebas Genéticas , Iones/metabolismo , Pruebas de Sensibilidad Microbiana , Níquel/metabolismo , Saccharomyces cerevisiae/genética
19.
FEMS Yeast Res ; 16(3)2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26975390

RESUMEN

Saccharomyces cerevisiae is the most widely used fermentation organism for ethanol production. However, the gene expression regulatory networks behind the ethanol fermentation are still not fully understood. Using a static fermentation model, we examined the ethanol yields on biomass of deletion mutants for 77 yeast genes encoding nonessential transcription factors, and found that deletion mutants for ACE2 and SWI5 showed dramatically increased ethanol yields. Overexpression of ACE2 or SWI5 in wild type cells reduced their ethanol yields. Furthermore, among the 34 target genes regulated by Ace2 and Swi5, deletion of CTS1,RPS4a,SIC1,EGT2,DSE2, or SCP160 led to increased ethanol yields, with the former two showing higher effects. Overexpression of CTS1 or RPS4a in both ace2/ace2 and swi5/swi5 mutants reduced their ethanol yields. In contrast, deletion of MCR1 or HO significantly decreased ethanol yields, with the former one showing the highest effect. Therefore, Ace2 and Swi5 are two negative regulators of ethanol yield during static fermentation of yeast cells, and both CTS1 and RPS4a are major effectors mediating these two transcription factors in regulating ethanol production.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quitinasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Etanol/metabolismo , Fermentación , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/genética , Quitinasas/genética , Proteínas de Unión al ADN/genética , Eliminación de Gen , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
20.
FEMS Yeast Res ; 16(3)2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26975389

RESUMEN

ATP-binding cassette (ABC) transporters constitute a large superfamily of integral membrane proteins in prokaryotic and eukaryotic cells. In the human fungal pathogen Candida albicans, there are 28 genes encoding ABC transporters and many of them have not been characterized so far. The orf19.4531 (also known as IPF7530) encodes a putative ABC transporter. In this study, we have demonstrated that disruption of orf19.4531 causes C. albicans cells to become tolerant to azoles, but not to polyene antifungals and terbinafine. Therefore, the protein encoded by orf19.4531 is involved in azole sensitivity and we name it as ROA1, the regulator of azole sensitivity 1 gene. Consistently, we show that the expression of ROA1 is responsive to treatment of either fluconazole or ketoconazole inC. albicans In addition, through a GFP tagging approach, Roa1 is localized in a small punctuate compartment adjacent to the vacuolar membrane. However, ROA1 is not essential for the in vitro filamentation of C. albicans cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antifúngicos/metabolismo , Azoles/metabolismo , Candida albicans/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/análisis , Transportadoras de Casetes de Unión a ATP/genética , Antifúngicos/farmacología , Azoles/farmacología , Candida albicans/genética , Técnicas de Inactivación de Genes , Membranas Intracelulares/química , Pruebas de Sensibilidad Microbiana , Naftalenos/metabolismo , Naftalenos/farmacología , Polienos/metabolismo , Polienos/farmacología , Terbinafina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA