Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38958784

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are recognized as a highly challenging subset of cells, renowned for their heightened propensity for relapse and unfavorable prognosis. Monensin, an ionophoric antibiotic, has been reported to exhibit significant therapeutic efficacy against various cancers, especially CSCs. Erlotinib is classified as one of the EGFR-TKIs and has been previously identified as a promising therapeutic target for TNBC. Our research aims to assess the effectiveness of combination of monensin and erlotinib as a potential treatment strategy for TNBC. METHODS: The combination of monensin and erlotinib was assessed for its potential anticancer activity through various in vitro assays, including cytotoxicity assay, colony formation assay, wound healing assay, transwell assay, mammosphere formation assay, and proportion of CSCs assay. Additionally, an in vivo study using tumor-bearing nude mice was conducted to evaluate the inhibitory effect of the monensin and erlotinib combination on tumor growth. RESULTS: The results indicated that combination of monensin with erlotinib synergistically inhibited cell proliferation, the migration rate, the invasion ability and decreased the CSCs proportion, and CSC markers SOX2 and CD133 in vivo and in vitro. Furthermore, the primary proteins involved in the signaling pathways of the EGFR/ERK and PI3K/AKT are simultaneously inhibited by the combination treatment of monensin and erlotinib in vivo and in vitro. CONCLUSIONS: The simultaneous inhibition of the EGFR/ERK and PI3K/AKT/mTOR signaling pathways by the combination of monensin and erlotinib exhibited a synergistic effect on suppressing tumor proliferation and cancer cell stemness in TNBC.

2.
J Appl Toxicol ; 41(12): 1937-1951, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33890316

RESUMEN

Maduramicin frequently induces severe cardiotoxicity in target and nontarget animals in clinic. Apoptotic and non-apoptotic cell death mediate its cardiotoxicity; however, the underlying non-apoptotic cell death induced by maduramicin remains unclear. In current study, a recently described non-apoptotic cell death "methuosis" caused by maduramicin was defined in mammalian cells. Rat myocardial cell H9c2 was used as an in vitro model, showing excessively cytoplasmic vacuolization upon maduramicin (0.0625-5 µg/mL) exposure for 24 h. Maduramicin-induced reversible cytoplasmic vacuolization of H9c2 cells in a time- and concentration-dependent manner. The vacuoles induced by maduramicin were phase lucent with single membrane and were not derived from the swelling of organelles such as mitochondria, endoplasmic reticulum, lysosome, and Golgi apparatus. Furthermore, maduramicin-induced cytoplasmic vacuoles are generated from micropinocytosis, which was demonstrated by internalization of extracellular fluid-phase marker Dextran-Alexa Fluor 488 into H9c2 cells. Intriguingly, these cytoplasmic vacuoles acquired some characteristics of late endosomes and lysosomes rather than early endosomes and autophagosomes. Vacuolar H+ -ATPase inhibitor bafilomycin A1 efficiently prevented the generation of cytoplasmic vacuoles and decreased the cytotoxicity of H9c2 cells triggered by maduramicin. Mechanism studying indicated that maduramicin activated H-Ras-Rac1 signaling pathway at both mRNA and protein levels. However, the pharmacological inhibition and siRNA knockdown of Rac1 rescued maduramicin-induced cytotoxicity of H9c2 cells but did not alleviate cytoplasmic vacuolization. Based on these findings, maduramicin induces methuosis in H9c2 cells via Rac-1 signaling-independent seriously cytoplasmic vacuolization.


Asunto(s)
Antibacterianos/toxicidad , Cardiotoxicidad/fisiopatología , Lactonas/toxicidad , Animales , Cardiotoxicidad/etiología , Cardiotoxicidad/patología , Línea Celular , Ratas , Transducción de Señal
3.
Ecotoxicol Environ Saf ; 211: 111896, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33440267

RESUMEN

Maduramicin, an extensively used anticoccidial drug, has been introduced into environment due to poorly absorbed in the intestine of broiler chicken. To understand the potential ecological toxicity of maduramicin on aquatic organisms, acute and subacute toxicity, hemolymph biochemistry, histopathology and the expressions of drug metabolism and stress response genes of crayfish (Procambius clarkii) were investigated in this study. For the first time, the 96 h median lethal concentration (LC50) of maduramicin on crayfish was 67.03 mgL-1 with a 95% confidence interval (54.06-81.32 mgL-1). Then, the crayfish were exposed to 0.7 mgL-1 (1/100 LC50), 3.5 mgL-1 (1/20 LC50) and 7.0 mgL-1 (1/10 LC50) maduramicin for 28 days. Maduramicin significantly altered biochemical parameters including AST, ALT, CK, LDH and ALP of hemolymph in crayfish at several time points. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) of crayfish gills, hepatopancreas and abdominal muscle were significantly decreased or elevated by different concentrations of maduramicin treatment at varying time points. Furthermore, histopathological damage of crayfish gills, hepatopancreas and abdominal muscle were observed in a concentration-dependent manner. The expressions of metabolic and stress response genes (CYP450, GST, COX1, COX2, HSP70 and MT) in hepatopancreas of crayfish were significantly up-regulated by maduramicin (7.0 mgL-1) treatment for 8 h to 7 d, and returned to normal levels after the removal of maduramicin for 3-7 days. In conclusion, our findings demonstrated that environmental exposure of maduramicin threaten to the health of crayfish living in the areas nearby livestock farms or pharmaceutical factory. Crayfish exhibited resistance to the stress of maduramicin via activating drug metabolite and detoxification pathways.


Asunto(s)
Antibacterianos/toxicidad , Astacoidea/fisiología , Lactonas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/metabolismo , Astacoidea/efectos de los fármacos , Catalasa/metabolismo , Branquias/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Hemolinfa/metabolismo , Hepatopáncreas/efectos de los fármacos , Inactivación Metabólica , Estrés Oxidativo/efectos de los fármacos , Alimentos Marinos , Superóxido Dismutasa/metabolismo
4.
Molecules ; 25(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481518

RESUMEN

The highly contagious Newcastle disease virus (NDV) continues to threaten poultry all over the world. The NDV DNA vaccine is a promising solution to the current Newcastle disease (ND) challenges, and thus an efficient delivery system should be developed to facilitate the efficacy of DNA vaccines. In this study, we developed a DNA vaccine delivery system consisting of a triblock copolymer of poly(lactide co-glycolide acid) and polyethylene glycol (PLGA-PEG-PLGA) hydrogel in which the recombinant NDV hemagglutinin-neuraminidase (HN) plasmid was encapsulated. Its characteristics, security, immune responses, and efficacy against highly virulent NDV were detected. The results showed that the plasmids were gradually released in a sustained manner from the hydrogel, which improved the biological stability of the plasmids and demonstrated a high biocompatibility. The plasmids, when they were incorporated into the hydrogel delivery system, enhanced immune activation and provided 100% protection against the highly virulent NDV strain. Furthermore, we proved that this NDV DNA hydrogel vaccine could improve the lymphocyte proliferation and increase the immunological cytokine production via the PI3K/Akt pathway. These results indicate that the PLGA-PEG-PLGA thermosensitive hydrogel could be a promising delivery system for the NDV DNA vaccine in order to achieve a sustained supply of plasmids and induce potent immune responses.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Hidrogeles/química , Enfermedad de Newcastle/prevención & control , Poliésteres/química , Polietilenglicoles/química , Vacunas de ADN/administración & dosificación , Vacunas de ADN/uso terapéutico , Animales , Western Blotting , Pollos , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Inmunidad Celular/efectos de los fármacos , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/patogenicidad , Viscosidad
5.
Molecules ; 25(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941074

RESUMEN

This study aimed to develop nanostructured lipid carriers (NLCs) for improved oral absorption of tilmicosin (TMS) in broilers. Thus, palmitic acid, lauric acid, and stearic acid were selected as solid lipids to formulate TMS-pNLCs, TMS-lNLCs, and TMS-sNLCs, respectively. They showed similar physicochemical properties and meanwhile possessed excellent storage and gastrointestinal stability. The TMS interacted with the lipid matrix and was encapsulated efficiently in NLCs in an amorphous structure. NLCs could enhance oral absorption of TMS compared to 10% tilmicosin phosphate solution in broilers, among which the TMS-sNLCs were the most efficient drug delivery carriers, with a relative oral bioavailability of 203.55%. NLCs could inhibit the efflux of P-glycoprotein (P-pg) toward TMS, which may be involved with improved oral absorption. Taken together, these types of solid lipids influenced the enhanced level of NLCs toward oral bioavailability of TMS, and the sNLCs proved to be the most promising oral delivery carriers of TMS.


Asunto(s)
Portadores de Fármacos , Ácidos Grasos , Nanopartículas , Tilosina/análogos & derivados , Administración Oral , Animales , Pollos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Ácidos Grasos/química , Ácidos Grasos/farmacocinética , Ácidos Grasos/farmacología , Nanopartículas/química , Nanopartículas/uso terapéutico , Tilosina/química , Tilosina/farmacocinética , Tilosina/farmacología
6.
J Cell Physiol ; 234(7): 10964-10976, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30511398

RESUMEN

Maduramicin (Mad), a polyether ionophore antibiotic, has been reported to be toxic to animals and humans because of being used at high doses or for long time, resulting in heart failure. However, the toxic mechanism of Mad in cardiac muscle cells is not well understood. Here, we show that Mad induced cell viability reduction and apoptosis in cardiac-derived H9c2, HL-1 cells, primary cardiomyocytes, and murine cardiac muscles, which was because of the inhibition of extracellular-signal-regulated kinase 1/2 (Erk1/2). Expression of constitutively active mitogen-activated protein kinase kinase 1 (MKK1) attenuated Mad-induced cell death in H9c2 cells, whereas silencing Erk1/2 or ectopic expression of dominant negative MKK1 strengthened Mad-induced cell death. Moreover, we found that both phosphatase and tensin homolog on chromosome 10 (PTEN) and protein kinase B (Akt) were implicated in the regulation of Erk1/2 inactivation and apoptosis in the cells and tissues exposed to Mad. Overexpression of dominant negative PTEN and/or constitutively active Akt, or constitutively active Akt and/or constitutively active MKK1 rescued the cells from Mad-induced dephosphorylated-Erk1/2 and cell death. Furthermore, Mad-induced reactive oxygen species (ROS) activated PTEN and inactivated Akt-Erk1/2 contributing to cell death, as N-acetyl- L-cysteine ameliorated the event. Taken together, the results disclose that Mad inhibits Erk1/2 via ROS-dependent activation of PTEN and inactivation of Akt, leading to cell death in cardiac muscle cells. Our findings suggest that manipulation of the ROS-PTEN-Akt-Erk1/2 pathway may be a potential approach to prevent Mad-induced cardiotoxicity.


Asunto(s)
Antibacterianos/efectos adversos , Lactonas/efectos adversos , Sistema de Señalización de MAP Quinasas/fisiología , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Humanos , Ratones , Miocitos Cardíacos/efectos de los fármacos , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Especies Reactivas de Oxígeno
7.
Ecotoxicol Environ Saf ; 168: 249-259, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30388543

RESUMEN

Maduramicin, a potent polyether ionophore antibiotic, has been widely used to control coccidiosis in the poultry production. Nevertheless, incomplete metabolism of maduramicin in chicken may result in its accumulation in the aquatic environment, while maduramicin's threat to fish remains largely unknown. In the present study, we focused on acute toxicity, histopathological lesion and oxidative stress damage of maduramicin in adult zebrafish. Primarily, we obtained that the 96-h median lethal concentration (96 h LC50) of adult zebrafish exposure to maduramicin was 13.568 mg/L. On basis of that, adult zebrafish were separately exposed to 0.1 mg/L (1/125 LC50), 0.5 mg/L (1/25 LC50) and 2.5 mg/L (1/5 LC50) maduramicin for 14 days. On day 3, 0.1 mg/L maduramicin significantly increased the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione s-transferase (GST) in the liver of zebrafish, while the activities of these antioxidant enzymes in the liver were significantly inhibited by 2.5 mg/L maduramicin. Moreover, the contents of malondialdehyde (MDA) in the liver of different dose groups were all significantly promoted after 14 days of exposure. For the gill of zebrafish, the increase in MDA contents was found after only 3 days of exposure to maduramicin. Furthermore, maduramicin treatment significantly up-regulated the mRNA levels of genes (sod1, gpx1a, gstr, nrf2 and keap1) in the liver of zebrafish after 3 days of exposure. On days 6, 9 and 14, maduramicin treatment significantly down-regulated the mRNA levels of these genes in the liver of zebrafish. Meanwhile, maduramicin significantly down-regulated the mRNA levels of genes (sod1, cat, gpx1a, gstr, nrf2 and keap1) in the gill of zebrafish during the 14-day of exposure. In addition, a dose-dependent induction in histopathological lesion was observed in multiple organs after 14 days of exposure, including lamellar fusion, epithelial lifting in the gill and vacuole formation in the liver as well as the fracture of intestinal villus in the intestine. Taken together, our findings demonstrated that waterborne maduramicin (2.5 mg/L) exposure can induce severe oxidative stress and tissue damage in adult zebrafish while this damage was not enough to kill them after 14 days of waterborne exposure.


Asunto(s)
Lactonas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Pruebas de Toxicidad Aguda , Contaminantes Químicos del Agua/toxicidad , Animales , Proteínas Portadoras , Catalasa/genética , Catalasa/metabolismo , Regulación de la Expresión Génica , Branquias/efectos de los fármacos , Branquias/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Dosificación Letal Mediana , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Malondialdehído/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Arch Toxicol ; 92(3): 1267-1281, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29128925

RESUMEN

Maduramicin, an excellent ionophore antibiotic, is extensively used to control coccidiosis in poultry. Numerous maduramicin intoxications have been reported in farm animal and human due to its relatively narrow safety range, with necrosis or degeneration of cardiac and skeletal muscles as hallmark. To date, the mechanisms of maduramicin-induced cardiotoxicity remain unclear in chicken and other animals. Maduramicin (5 µg/mL)-treated primary chicken myocardial cells were used for RNA sequencing (RNA-Seq) and bioinformatics analysis in this study. A total of 1442 differential expressed genes were identified. 810 genes were up-regulated and the rest 632 genes were down-regulated. Transcriptome analysis revealed that the cytokine-cytokine receptor interaction, apoptosis, calcium signal and cytoplasmic vacuolization pathways were significantly affected. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that gene expression patterns were consistent with RNA-Seq analysis. Pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8), apoptosis ratios, cleaved caspase-3, intracellular calcium level and Ca2+-ATPase activity were elevated after maduramicin (0.05, 0.5 and 5 µg/mL) treatment. Massive vacuole formation was found in the cytoplasm by morphology and transmission electron microscopy observation. Taken together, the results suggested that maduramicin exerted its cardiotoxicity by multiple molecular mechanisms in primary chicken myocardial cells.


Asunto(s)
Cardiotoxicidad/genética , Regulación de la Expresión Génica/efectos de los fármacos , Lactonas/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Animales , Antibacterianos/toxicidad , Apoptosis/genética , Calcio/metabolismo , Cardiotoxicidad/patología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Pollos , Citoplasma/efectos de los fármacos , Citoplasma/genética , Citoplasma/patología , Perfilación de la Expresión Génica , Ontología de Genes , Homeostasis/efectos de los fármacos , Homeostasis/genética , Inflamación/inducido químicamente , Inflamación/genética , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
9.
J Appl Toxicol ; 38(3): 366-375, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29047155

RESUMEN

Maduramicin, a polyether ionophore antibiotic, is widely used as an anticoccidial agent in the poultry industry. It has been reported that maduramicin may cause heart and skeletal muscle cell damage, resulting in heart failure, skeletal muscle degeneration and even death in animals and humans, if improperly used. However, the molecular mechanism behind its capability to cause death of cardiac cells is not known. Here, we show that maduramicin induced apoptosis and necrosis in rat myocardial cells (H9c2). Maduramicin did not apparently upregulate the expression of pro-apoptotic proteins (e.g., BAD, BAK and BAX) or downregulate the expression of anti-apoptotic proteins (e.g. Bcl-2, Bcl-xL, Mcl-1 and survivin). Interestingly, maduramicin increased the expression of DR4 and TRAIL, activating caspases 8/3 and triggering cleavage of poly ADP ribose polymerase (PARP). In addition, maduramicin induced nuclear translocation of apoptosis inducing factor. Furthermore, maduramicin blocked autophagic flux, as evidenced by inducing accumulation of both LC3-II and p62/SQSTM1. Taken together, the above results suggest that maduramicin executes its toxicity in the myocardial cells at least by inducing caspase-dependent cell death through TRAIL/DR4-mediated extrinsic pathway and caspase-independent cell death by inducing apoptosis inducing factor nuclear translocation and blocking autophagic flux. Our findings provide a new insight into the molecular mechanism of maduramicin's toxicity in myocardial cells.


Asunto(s)
Antibacterianos/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Lactonas/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Cardiotoxicidad , Línea Celular , Miocitos Cardíacos/patología , Necrosis , Ratas , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Transducción de Señal/efectos de los fármacos , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
10.
J Nanosci Nanotechnol ; 17(2): 1046-052, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29672008

RESUMEN

Nanosilver particles (SNPs) have been widely exploited in various fields, including the medical sciences due to their excellent inhibitory and bactericidal effects. It is of great importance to prepare SNPs using green synthesis that has environmentally acceptable solvent systems and eco-friendly reducing agents. In the current study, gallic acid was employed as both a reducing agent and a stabilizing agent to synthesize SNPs at mild ambient conditions. The image of transmission electron microscopy (TEM) showed that SNPs exhibited approximately spherical shape with the average diameter of 13.81±2.21 nm. The absorbance peak of obtained SNPs was sharp with the maximum wavelength of 400.5 nm by ultraviolet-visible (UV-vis) spectroscopy, suggesting the formation of small and highly monodispersed SNPs. The antimicrobial potential of the SNPs was evaluated against multiple common pathogenic microbes. The results indicated that the microbial sensitivity to the SNPs was found to vary depending on the microbial species. Among them, the gram-negative bacteria exhibited more sensitive toward SNPs than the gram-positive bacteria. In addition, the N-acetyl-L-cysteine (NAC), a silver ion chelator, pretreatment could protect the E. coli and P. aeruginosa from the SNPs inhibition, while the pretreatment of the L-ascorbic acid, an antioxidant against oxidative stress, did not significantly influence the antibacterial effects of the SNPs. These data suggested that the ionic silver release, but not reactive oxygen species (ROS), played a key role in the antimicrobial effect of the SNPs. To sum up, this study provides an environmentally friendly technique for facile synthesis of SNPs with excellent antibacterial potential.

11.
Pak J Pharm Sci ; 29(1): 139-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26826827

RESUMEN

The objective of the research was to detect the enhancement effect of sodium taurocholate on the absorption of cefquinome both in Caco-2 cells and rats. The absorption efficiency of cefquinome was determined by high performance liquid chromatography and calculated with apparent permeability coefficients (Papp) after Caco-2 cell monolayers treated odium taurocholate(2 mmol/L) and cefquinome. The results showed that the absorption of cefquinome in Caco-2 cell monolayers was significantly increased with the sodium taurocholate (2mmol/L). Similar results were also detected in the rats orally administrated with 1 mL PBS of cefquinome (20mg/mL) containing different concentration of sodium taurocholate (5 mmol/L, 10mmol/L and 20mmol/L) respectively. Compared with control group, sodium taurocholate at 10 and 20 mmol/L increased the absorption of cefquinome in rats from 0.26±0.04µg/mL to 0.57±0.03µg/mL, 0.78 ±0.07µg/mL respectively. These results indicated that sodium taurocholate could increase the intestinal permeability in a concentration-dependent mode, which will be useful for clinical treatment.


Asunto(s)
Cefalosporinas/farmacocinética , Absorción Intestinal/efectos de los fármacos , Ácido Taurocólico/farmacología , Animales , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Cefalosporinas/farmacología , Cromatografía Líquida de Alta Presión , Humanos , Ratas
12.
Regul Toxicol Pharmacol ; 69(3): 487-95, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24878239

RESUMEN

We subjected Sprague-Dawley rats to an acute and 13-week subchronic oral toxicity of arprinocid, a nucleoside analogue used as a coccidiostat, according to toxicological guidelines as part of its safety assessment. In the acute study, arprinocid was administered once by oral gavage to rats at doses ranging from 292.4 to 506.0mg/kgb.w. The calculated LD50 was 442.9mg/kgb.w. in males and 378.7mg/kgb.w. in females. In the subchronic study, male and female rats were fed with diets supplemented with 0, 25, 187.5 or 500ppm arprinocid for 13weeks. Significantly lower body weights were noted in the 500ppm group females. The mean body weights of the 500ppm group females were 12.9% lower than that of the controls. Significant differences in haematological and biochemical parameters as well as organ weights were detected between the 500 and 187.5ppm groups. Histopathological observations revealed that 500 and 187.5ppm arprinocid could induce hepatic steatosis and focal hepatocellular necrosis. Slight protein cast in some renal tubules and tubular regeneration were observed in the high dose group of both genders. The dietary no-observed-adverse-effect level (NOAEL) of arprinocid in rats for 13weeks is 25ppm (approximately 1.7mg/kgb.w./day).


Asunto(s)
Adenina/análogos & derivados , Adenina/efectos adversos , Administración Oral , Animales , Peso Corporal/efectos de los fármacos , Dieta/métodos , Hígado Graso/inducido químicamente , Femenino , Túbulos Renales/efectos de los fármacos , Masculino , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
13.
Genet Mol Biol ; 37(3): 500-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25249772

RESUMEN

Reference genes are commonly used for normalization of target gene expression during RT-qPCR analysis. However, no housekeeping genes or reference genes have been identified to be stable across different tissue types or under different experimental conditions. To identify the most suitable reference genes for RT-qPCR analysis of target gene expression in the hepatopancreas of crucian carp (Carassius auratus) under various conditions (sex, age, water temperature, and drug treatments), seven reference genes, including beta actin (ACTB), beta-2 microglobulin (B2M), embryonic elongation factor-1 alpha (EEF1A), glyceraldehyde phosphate dehydrogenase (GAPDH), alpha tubulin (TUBA), ribosomal protein l8 (RPL8) and glucose-6-phosphate dehydrogenase (G6PDH), were evaluated in this study. The stability and ranking of gene expression were analyzed using three different statistical programs: GeNorm, Normfinder and Bestkeeper. The expression errors associated with selection of the genes were assessed by the relative quantity of CYP4T. The results indicated that all the seven genes exhibited variability under the experimental conditions of this research, and the combination of ACTB/TUBA/EEF1A or of ACTB/EEF1A was the best candidate that raised the accuracy of quantitative analysis of gene expression. The findings highlighted the importance of validation of housekeeping genes for research on gene expression under different conditions of experiment and species.

14.
Int J Pharm X ; 7: 100241, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572023

RESUMEN

In female dogs, the highest morbidity and mortality rates cancer are the result of mammary adenocarcinoma, which presents with metastases in the lung. Other than early surgical removal, however, no special methods are available to treat mammary adenocarcinoma. Because human breast cancer and canine mammary carcinoma share clinical characteristics and heterogeneity, the canine model is a suitable spontaneous tumor model for breast cancer in humans. In this study, the physical swelling method was used to prepare halofuginone-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) polymer micelles nano-thermosensitive hydrogels (HTPM-gel). Furthermore, HTPM-gel was investigated via characterization, morphology, properties such as swelling experiment and in vitro release with reflecting its splendid nature. Moreover, HTPM-gel was further examined its capability to anti-proliferation, anti-migration, and anti-invasion. Ultimately, HTPM-gel was investigated for its in vivo anticancer activity in the post-operative metastatic and angiogenic canine mammary carcinoma. HTPM-gel presented spherical under transmission electron microscope (TEM) and represented grid structure under scanning electron microscope (SEM), with hydrodynamic diameter (HD) of 20.25 ± 2.5 nm and zeta potential (ZP) of 15.10 ± 1.82 mV. Additionally, HTPM-gel own excellent properties comprised of pH-dependent swelling behavior, sustained release behavior. To impede the migration, invasion, and proliferation of CMT-U27 cells, we tested the efficacy of HTPM-gel. Evaluation of in vivo anti-tumor efficacy demonstrates HTPM-gel exhibit a splendid anti-metastasis and anti-angiogenic ability, with exhibiting ideal biocompatibility. Notably, HTPM-gel also inhibited the scar formation in the healing process after surgery. In summary, HTPM-gel exhibited anti-metastasis and anti-angiogenic and scar repair features. According to the results of this study, HTPM-gel has encouraging clinical potential to treat tumors with multifunctional hydrogel.

15.
Am J Transl Res ; 16(3): 768-780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586086

RESUMEN

BACKGROUND: Serum phosphate levels remain insufficiently controlled in chronic kidney disease (CKD) patients, and novel therapeutic strategies are needed. Blocking intestinal phosphate absorption mediated by sodium-dependent phosphate cotransporter type 2b (NPT2b) holds promise as one such strategy. METHODS: The in vitro cellular potency of DZ1462 was evaluated using a radioactive Pi uptake assay on stable Chinese hamster ovary (CHO) cell clones transfected with human NPT2b (hNPT2b) or rat NPT2b (rNPT2b). The ability of DZ1462 to inhibit phosphate absorption was studied in vivo in an acute model after oral bolus challenge with 33PO4 and in an adenine-induced chronic hyperphosphatemia rat model. PK and minitox was also evaluated. RESULTS: The cellular assays with the hNPT2b-CHO and rNPT2b-CHO clones showed that DZ1462 significantly and potently inhibited phosphate uptake. In vivo, in a chronic Pi-fed rat model, DZ1462 effectively inhibited intestinal Pi uptake. In a hyperphosphatemia rat model, DZ1462 significantly inhibited Pi uptake, and DZ1462 in combination with sevelamer had a synergistic effect. The pharmacokinetics (PK) study confirmed that DZ1462 is a gastrointestinal (GI)-restricted compound that can remain in the intestine for a sufficient duration. In addition, DZ1462 also reduced cardiovascular events and ameliorated osteoporosis in a CKD animal model. CONCLUSIONS: This study revealed that a GI-restricted NPT2b inhibitor DZ1462 potently inhibits NPT2b in vitro and blocks intestinal phosphate uptake in multiple animal models with potential to reduce various cardiovascular events in CKD models. Therefore, DZ1462 may be useful to treat renal disease patients who have shown an unsatisfactory response to phosphate binders.

16.
Biomed Pharmacother ; 170: 116062, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38150878

RESUMEN

Canine mammary tumors (CMT) can severely compromise the life quality of the affected dogs through local recurrence, distant metastases and ultimately succumb to death. Recently, more attention has been given to the potential antimetastatic effect of maduramicin (MAD) on breast cancer. However, its poor aqueous solubility and toxicity to normal tissues limit its clinical application. Therefore, to address the drawbacks of MAD and enhance its anticancer and antimetastatic effects, MAD-loaded TPGS polymeric micelles (MAD-TPGS) were prepared by a thin-film hydration technique. The optimized MAD-TPGS exhibited excellent size distribution, stability and improved water solubility. Cellular uptake assays showed that TPGS polymer micelles could enhance drug internalization. Moreover, TPGS synergistically improved the cytotoxicity of MAD by targeting mitochondrial organelles, improving reactive oxygen species levels and reducing the mitochondrial transmembrane potential. More importantly, MAD-TPGS significantly impeded the metastasis of tumor cells. In vivo results further confirmed that, in addition to exhibiting excellent biocompatibility, MAD-TPGS exhibited greater antitumor efficacy than free MAD. Interestingly, MAD-TPGS displayed superior suppression of CMT metastasis via tail vein injection compared to oral administration, indicating its suitability for intravenous delivery. Overall, MAD-TPGS could be applied as a potential antimetastatic cancer agent for CMT.


Asunto(s)
Antineoplásicos , Neoplasias Mamarias Animales , Perros , Animales , Micelas , Polietilenglicoles , Antineoplásicos/farmacología , Polímeros , Neoplasias Mamarias Animales/tratamiento farmacológico , Vitamina E , Portadores de Fármacos , Línea Celular Tumoral
17.
Int J Pharm ; 661: 124384, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917957

RESUMEN

Postoperative distant metastasis and high recurrence rate causes a dilemma in treating triple-negative breast cancer (TNBC) owing to its unforeseeable invasion into various organs or tissues. The wealth of nutrition provided by vascular may facilitate the proliferation and angiogenesis of cancer cells, which further enhance the rates of postoperative metastasis and recurrence. Chemotherapy, as a systemic postoperative adjuvant therapy, is generally applied to diminish recurrence and metastasis of TNBC. Herein, an halofuginone-silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. The in vitro anticancer efficacy of HTPM&AgNPs-gel was analyzed by investigating cell proliferation, migration, invasion, and angiogenesis capacity. Furthermore, the in vivo anti-cancer activity of HTPM&AgNPs-gel was further appraised through the tumor suppression, anti-metastatic, anti-angiogenic, and anti-inflammatory ability. The optimized HTPM&AgNPs-gel, a thermosensitive hydrogel, showed excellent properties, including syringeability, swelling behavior, and a sustained release effect without hemolysis. In addition, HTPM&AgNPs-gel was confirmed to effectively inhibit the proliferation, migration, invasion, and angiogenesis of MDA-MB-231 cells. An evaluation of the in vivo anti-tumor efficacy demonstrated that HTPM&AgNPs-gel showed a stronger tumor inhibition rate (68.17%) than did HTPM-gel or AgNPs-gel used alone and exhibited outstanding biocompatibility. Notably, HTPM&AgNPs-gel also inhibited lung metastasis induced by residual tumor tissue after surgery and further blocked angiogenesis-related inflammatory responses. Taken together, the suppression of inflammation by interdicting the blood vessels adjoining the tumor and inhibiting angiogenesis is a potential strategy to attenuate the recurrence and metastasis of TNBC. HTPM&AgNPs-gel is a promising anticancer agent for TNBC as a local postoperative treatment.

18.
Life Sci ; 339: 122414, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38216121

RESUMEN

Contamination by pathogens, such as bacteria, can irritate a wound and prevent its healing, which may affect the physical fitness of the infected person. As such, the development of more novel nano-biomaterials able to cope with the inflammatory reaction to bacterial infection during the wound healing process to accelerate wound healing is required. Herein, a halofuginone­silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. HTPM&AgNPs-gel was characterized based on thermogravimetric analysis, differential scanning calorimetry, morphology, injectability, and rheological mechanics that reflected its exemplary nature. Moreover, HTPM&AgNPs-gel was further tested for its ability to facilitate healing of skin fibroblasts and exert antibacterial activity. Finally, HTPM&AgNPs-gel was tested for its capacity to accelerate general wound healing and treat bacterially induced wound damage. HTPM&AgNPs-gel appeared spherical under a transmission electron microscope and showed a grid structure under a scanning electron microscope. Additionally, HTPM&AgNPs-gel demonstrated excellent properties, including injectability, temperature-dependent swelling behavior, low loss at high temperatures, and appropriate rheological properties. Further, HTPM&AgNPs-gel was found to effectively promote healing of skin fibroblasts and inhibit the proliferation of Escherichia coli and Staphylococcus aureus. An evaluation of the wound healing efficacy demonstrated that HTPM&AgNPs-gel had a more pronounced ability to facilitate wound repair and antibacterial effects than HTPM-gel or AgNPs-gel alone, and exhibited ideal biocompatibility. Notably, HTPM&AgNPs-gel also inhibited inflammatory responses in the healing process. HTPM&AgNPs-gel exhibited antibacterial, anti-inflammatory, and scar repair features, which remarkably promoted wound healing. These findings indicated that HTPM&AgNPs-gel holds great clinical potential as a promising and valuable wound healing treatment.


Asunto(s)
Nanopartículas del Metal , Piperidinas , Quinazolinonas , Plata , Humanos , Plata/farmacología , Plata/química , Staphylococcus aureus , Cicatrización de Heridas , Nanopartículas del Metal/química , Antibacterianos/farmacología , Hidrogeles/química , Antiinflamatorios/farmacología
19.
Front Endocrinol (Lausanne) ; 14: 1195618, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37347106

RESUMEN

Testicular Leydig cells (LCs) are the primary known source of testosterone, which is necessary for maintaining spermatogenesis and male fertility. However, the isolation, identification, and functional analysis of testosterone in duck LCs are still ambiguous. The aim of the present study was to establish a feasible method for isolating highly purified primary duck LCs. The highly purified primary duck LCs were isolated from the fresh testes of 2-month-old ducks via the digestion of collagenase IV and Percoll density gradient centrifugation; hematoxylin and eosin (H&E), immunohistochemistry (IHC) staining, ELISA, and radioimmunoassay were performed. Results revealed that the LCs were prominently noticeable in the testicular interstitium of 2-month-old ducks as compared to 6-month-old and 1-year-old ducks. Furthermore, IHC demonstrated that the cultured LCs occupied 90% area of the petri dish and highly expressed 3ß-HSD 24 h after culture (hac) as compared to 48 and 72 hac. Additionally, ELISA and radioimmunoassay indicate that the testosterone level in cellular supernatant was highly expressed in 24 and 48 hac, whereas the testosterone level gradually decreased in 72 and 96 hac, indicating the primary duck LCs secrete testosterone at an early stage. Based on the above results, the present study has effectively developed a technique for isolating highly purified primary duck LCs and identified its biological function in synthesizing testosterone.


Asunto(s)
Patos , Células Intersticiales del Testículo , Animales , Masculino , Testosterona , Testículo , Células Cultivadas
20.
Food Chem Toxicol ; 178: 113922, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37394175

RESUMEN

Methuosis, a novel cell death phenotype, is characterized by accumulation of cytoplasmic vacuolization upon external stimulus. Methuosis plays a critical role in maduramicin-induced cardiotoxicity despite the underlying mechanism is largely unknown. Herein, we aimed to investigate the origin and intracellular trafficking of cytoplasmic vacuoles, as well as the molecular mechanism of methuosis caused by maduramicin (1 µg/mL) in myocardial cells. H9c2 cells and broiler chicken were used and were exposed to maduramicin at doses of 1 µg/mL in vitro and 5 ppm-30 ppm in vivo. Morphological observation and dextran-Alexa Fluor 488 tracer experiment showed that endosomal compartments swelling and excessive macropinocytosis contributed to madurdamcin-induced methuosis. Cell counting kit-8 assay and morphology indicated pharmacological inhibition of macropinocytosis largely prevent H9c2 cells from maduramicin-triggered methuosis. In addition, late endosomal marker Rab7 and lysosomal associated membrane protein 1 (LAMP1) increased in a time-dependent manner after maduramicin treatment, and the recycling endosome marker Rab11 and ADP-ribosylation factor 6 (Arf6) were decreased by maduramicin. Vacuolar-H+-ATPase (V-ATPase) was activated by maduramicin, and pharmacological inhibition and genetic knockdown V0 subunit of V-ATPase restore endosomal-lysosomal trafficking and prevent H9c2 cells methuosis. Animal experiment showed that severe cardiac injury included the increase of creatine kinase (CK) and creatine kinase-MB (CK-MB), and vacuolar degeneration resembled methuosis in vivo after maduramicin treatment. Taken together, these findings demonstrate that targeting the inhibition of V-ATPase V0 subunit will prevent myocardial cells methuosis by restoring endosomal-lysosomal trafficking.


Asunto(s)
Pollos , ATPasas de Translocación de Protón Vacuolares , Animales , Pollos/metabolismo , Endosomas/genética , Endosomas/metabolismo , Lisosomas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA