Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Cancer ; 20(1): 156, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34856993

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common type of human lung cancers, which has diverse pathological features. Although many signaling pathways and therapeutic targets have been defined to play important roles in NSCLC, limiting efficacies have been achieved. METHODS: Bioinformatics methods were used to identify differential long non-coding RNA expression in NSCLC. Real-time RT-PCR experiments were used to examine the expression pattern of lncRNA PKMYT1AR, miR-485-5p. Both in vitro and in vivo functional assays were performed to investigate the functional role of PKMYT1AR/miR-485-5p/PKMYT1 axis on regulating cell proliferation, migration and tumor growth. Dual luciferase reporter assay, fluorescent in situ hybridization (FISH), immunoblot, co-immunoprecipitation experiments were used to verify the molecular mechanism. RESULT: Here, we identify a human-specific long non-coding RNA (lncRNA, ENST00000595422), termed PKMYT1AR (PKMYT1 associated lncRNA), that is induced in NSCLC by Yin Yang 1 (YY1) factor, especially in cancerous cell lines (H358, H1975, H1299, H1650, A549 and SPC-A1) compared to that in normal human bronchial epithelium cell line (BEAS-2B). We show that PKMYT1AR high expression correlates with worse clinical outcome, and knockdown of PKMYT1AR inhibits tumor cell proliferation, migration and xenograft tumor formation abilities. Bioinformatic analysis and a luciferase assay demonstrate that PKMYT1AR directly interacts with miR-485-5p to attenuate the inhibitory role on its downstream oncogenic factor PKMYT1 (the protein kinase, membrane-associated tyrosine/threonine 1) in NSCLC. Furthermore, we uncover that miR-485-5p is downregulated in both cancerous cell lines and peripheral blood serum isolated from NSCLC patients compared to reciprocal control groups. Consistently, forced expression of miR-485-5p inhibits the proliferation and migration abilities of tumor cells. Moreover, we provide evidence showing that PKMYT1AR targeting antisense oligonucleotide (ASO) dramatically inhibit tumor growth in vivo. Mechanistic study shows that PKMYT1AR/ miR-485-5p /PKMYT1 axis promotes cancer stem cells (CSCs) maintenance in NSCLC via inhibiting ß-TrCP1 mediated ubiquitin degradation of ß-catenin proteins, which in turn causes enhanced tumorigenesis. CONCLUSIONS: Our findings reveal the critical role of PKMYT1AR/miR-485-5p /PKMYT1 axis during NSCLC progression, which could be used as novel therapeutic targets in the future.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/etiología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/genética , Células Madre Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , ARN Largo no Codificante/genética , Vía de Señalización Wnt , Regiones no Traducidas 3' , Animales , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , MicroARNs , Terapia Molecular Dirigida , Oligonucleótidos Antisentido , Pronóstico , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Estabilidad Proteica , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Interferencia de ARN
2.
Front Oncol ; 14: 1390669, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544829

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2022.860961.].

4.
Sci Rep ; 13(1): 13568, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604869

RESUMEN

Mounting evidence has found that tumor microenvironment (TME) plays an important role in the tumor progression of lung adenocarcinoma (LUAD). However, the roles of tumor microenvironment-related genes in immunotherapy and clinical outcomes remain unclear. In this study, 6 TME-related genes (PLK1, LDHA, FURIN, FSCN1, RAB27B, and MS4A1) were identified to construct the prognostic model. The established risk scores were able to predict outcomes at 1, 3, and 5 years with greater accuracy than previously known models. Moreover, the risk score was closely associated with immune cell infiltration and the immunoregulatory genes including T cell exhaustion markers. In conclusion, the TME risk score can function as an independent prognostic biomarker and a predictor for evaluating immunotherapy response in LUAD patients, which provides recommendations for improving patients' response to immunotherapy and promoting personalized tumor immunotherapy in the future.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Microambiente Tumoral/genética , Pronóstico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Complejo CD3 , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Proteínas Portadoras , Proteínas de Microfilamentos
5.
Biomark Res ; 11(1): 5, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650570

RESUMEN

YTHDF1 is a well-characterized m6A reader protein that is essential for protein translation, stem cell self-renewal, and embryonic development. YTHDF1 regulates target gene expression by diverse molecular mechanisms, such as promoting protein translation or modulating the stability of mRNA. The cellular levels of YTHDF1 are precisely regulated by a complicated transcriptional, post-transcriptional, and post-translational network. Very solid evidence supports the pivotal role of YTHDF1 in embryonic development and human cancer progression. In this review, we discuss how YTHDF1 influences both the physiological and pathological biology of the central nervous, reproductive and immune systems. Therefore we focus on some relevant aspects of the regulatory role played by YTHDF1 as gene expression, complex cell networking: stem cell self-renewal, embryonic development, and human cancers progression. We propose that YTHDF1 is a promising future cancer biomarker for detection, progression, and prognosis. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy.

6.
Aging (Albany NY) ; 15(10): 4510-4523, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37256932

RESUMEN

Integrin alpha L (ITGAL) seemed to play a critical role in carcinogenesis and immune regulation. Nevertheless, the effects of ITGAL on non-small cell lung cancer (NSCLC) remain elusive. The present paper intended to determine the effects of ITGAL in NSCLC via the integration of bioinformatic analyses. In this study, we found that the mRNA and protein levels of ITGAL were downregulated in NSCLC tissues. Significantly, low ITGAL expression was related to poorer prognosis and increased malignancy of NSCLC. In addition, GO analysis and KEGG pathway analysis revealed that the coexpressed genes of ITGAL were predominantly associated with various immune-associated signaling pathways, like the T cell receptor signaling pathway, Th17 cell differentiation, chemokine signaling pathway, and NF-κB signaling pathway. Our result indicated that lncRNA-mediated downregulation of integrin alpha L expression was tightly related to immunocyte infiltration, immune modulators, and chemotactic factors in NSCLC, which potentially serves as a biomarker for clinical prognosis prediction and immunotherapy of NSCLC. This is the first comprehensive analysis of ITGAL in the prognosis, immune microenvironment, and immunotherapy of lung adenocarcinoma. ITGAL are promising biomarkers for predicting clinical outcomes and immunotherapy responses in patients with NSCLC.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Pronóstico , Regulación hacia Abajo , Integrinas/metabolismo , Pulmón/patología , Microambiente Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN/genética
7.
Aging (Albany NY) ; 15(9): 3538-3548, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37142269

RESUMEN

LncRNA plays a pivotal role in the stemness and drug resistance of lung cancer. Here, we found that lncRNA-AC026356.1 was upregulated in stem spheres and chemo-resistant lung cancer cells. Our fish assay also shows that AC026356.1 was predominantly located in the cytoplasm of lung cancer cells and does not have protein-coding potential. Silencing AC026356.1 significantly inhibited proliferation and migration but increased apoptosis in A549-cisplatin (DDP) cells. Additionally, IGF2BP2 and the lncRNA-AC026356.1 positively regulated the proliferation and stemness of stem-like lung cancer cells. Further mechanistic investigation revealed that METTL14/IGF2BP2-mediated m6A modification and stabilization of the AC026356.1 RNA. Functional analysis corroborated that AC026356.1 acted as a downstream target of METTL14/IGF2BP2 and AC026356.1 silencing could block the oncogenicity of lung cancer stem-like cells. AC026356.1 expression was correlated with immune cell infiltration and T cell exhaustion. Compared with paired adjacent normal tissues, lung cancer specimens exhibited consistently upregulated METTL14/IGF2BP2/AC026356.1. M6A-modified METTL14/IGF2BP2/AC026356.1 loop may serve as a potential therapeutic target and prognostic predictor for lung cancer therapy and diagnosis in the clinic.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , ARN Largo no Codificante , Animales , Vía de Señalización Wnt/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba , Resistencia a Antineoplásicos/genética , Apoptosis/genética , Neoplasias Pulmonares/patología , Pulmón/patología , Células Madre Neoplásicas/metabolismo , Proliferación Celular/genética
8.
Int J Biol Sci ; 19(6): 1681-1697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063420

RESUMEN

Gliomas are the most aggressive type of malignant brain tumors. Recent studies have demonstrated that the existence of glioma stem cells (GSCs) is critical for glioma recurrence, metastasis, and chemo- or radio-therapy resistance. Temozolomide (TMZ) has been used as an initial therapy for gliomas. However, the overall survival time is still limiting due to the lack of effective targets and treatment options. Therefore, identifying novel biomarkers for gliomas, especially for GSCs, is important to improve the clinical outcome in the future. In this study, we identify a human-specific long non-coding RNA (lncRNA, ENSG00000250377), termed GSCAR (glioma stem cell associated lncRNA), which is highly expressed in glioma cancerous tissues and cell lines. We reveal that GSCAR positively correlates with tumor grade. Glioma patients with GSCAR high expression exhibit shortened overall survival time, compared to patients with GSCAR low expression. Furthermore, we show that GSCAR knockdown by shRNAs or antisense oligonucleotide (ASO) reduces tumor cell proliferation, migration and xenograft tumor formation abilities. Mechanistic study shows that GSCAR acts as a ceRNA (competing endogenous RNA) for miR-6760-5p to promote the expression of oncogene SRSF1 (serine and arginine rich splicing factor 1). In addition, GSCAR mediates the protein complex formation between DHX9 (DExH-Box helicase 9) and IGF2BP2 (insulin-like growth factor 2 mRNA-binding protein 2), leading to the stabilization of SOX2 (sex-determining region Y-box 2) mRNA and then the transcriptional activation of GSCAR. Depleting GSCAR reduces SOX2 expression and GSC self-renewal ability, but promotes tumor cell responses to TMZ. These findings uncover that GSCAR/miR-6760-5p/SRSF1 axis and GSCAR/DHX9-IGF2BP2/SOX2 positive feedback loop are critical for glioma progression, which could be used as prognostic biomarkers and therapeutic targets in the future.


Asunto(s)
Glioma , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/metabolismo , Glioma/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Proliferación Celular/genética , Células Madre Neoplásicas/metabolismo , ARN Mensajero/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Empalme Serina-Arginina/genética
9.
Front Oncol ; 12: 929655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719962

RESUMEN

Background: Lung cancer has the highest death rate among cancers globally. Accumulating evidence has indicated that cancer-related inflammation plays an important role in the initiation and progression of lung cancer. However, the prognosis, immunological role, and associated regulation axis of inflammatory response-related gene (IRRGs) in non-small-cell lung cancer (NSCLC) remains unclear. Methods: In this study, we perform comprehensive bioinformatics analysis and constructed a prognostic inflammatory response-related gene (IRRGs) and related competing endogenous RNA (ceRNA) network. We also utilized the Pearson's correlation analysis to determine the correlation between IRRGs expression and tumor mutational burden (TMB), microsatellite instability (MSI), tumor-immune infiltration, and the drug sensitivity in NSCLC. Growth curve and Transwell assay used to verify the function of SNHG17 on NSCLC progression. Results: First, we found that IRRGs were significantly upregulated in lung cancer, and its high expression was correlated with poor prognosis; high expression of IRRGs was significantly correlated with the tumor stage and poor prognosis in lung cancer patients. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that these IRRGs are mainly involved in the inflammatory and immune response-related signaling pathway in the progression of NSCLC. We utilized 10 prognostic-related genes to construct a prognostic IRRGs model that could predict the overall survival of lung adenocarcinoma (LUAD) patients possessing high specificity and accuracy. Our evidence demonstrated that IRRGs expression was significantly correlated with the TMB, MSI, immune-cell infiltration, and diverse cancer-related drug sensitivity. Finally, we identified the upstream regulatory axis of IRRGs in NSCLC, namely, lncRNA MIR503HG/SNHG17/miR-330-3p/regulatory axis. Finally, knockdown of SNHG17 expression inhibited lung adenocarcinoma (LUAD) cell proliferation and migration. Our findings confirmed that SNHG17 is a novel oncogenic lncRNA and may be a biomarker for the prognosis and diagnosis of LUAD. Conclusion: DNA hypomethylation/lncRNA MIR503HG/SNHG17/microRNA-330-3p/regulatory axis may be a valuable biomarker for prognosis and is significantly correlated with immune cell infiltration in lung cancer.

10.
Front Oncol ; 12: 972329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957918

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2022.929655.].

11.
Front Oncol ; 12: 862602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338714

RESUMEN

Lung cancer is the leading cause of cancer-related deaths worldwide. Despite the recent advent of promising new targeted therapies, lung cancer diagnostic strategies still have difficulty in identifying the disease at an early stage. Therefore, the characterizations of more sensible and specific cancer biomarkers have become an important goal for clinicians. Circular RNAs are covalently close, endogenous RNAs without 5' end caps or 3'poly (A) tails and have been characterized by high stability, abundance, and conservation as well as display cell/tissue/developmental stage-specific expressions. Numerous studies have confirmed that circRNAs act as microRNA (miRNA) sponges, RNA-binding protein, and transcriptional regulators; some circRNAs even act as translation templates that participate in multiple pathophysiological processes. Growing evidence have confirmed that circRNAs are involved in the pathogenesis of lung cancers through the regulation of proliferation and invasion, cell cycle, autophagy, apoptosis, stemness, tumor microenvironment, and chemotherapy resistance. Moreover, circRNAs have emerged as potential biomarkers for lung cancer diagnosis and prognosis and targets for developing new treatments. In this review, we will summarize recent progresses in identifying the biogenesis, biological functions, potential mechanisms, and clinical applications of these molecules for lung cancer diagnosis, prognosis, and targeted therapy.

12.
Front Oncol ; 12: 895708, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646670

RESUMEN

Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. Long noncoding RNAs (lncRNAs) have been implicated in the initiation and progression of various cancers. LncRNA-AC099850.3 is a novel lncRNA that is abnormally expressed in diverse cancer types including LUAD. However, the clinical significance, prognostic value, diagnostic value, immune role, and potential biological function of AC099850.3 LUAD remain elusive. In this study, we found that AC099850.3 was highly expressed in LUAD and associated with an advanced tumor stage, poor prognosis, and immune infiltration. Receiver operating curve analysis revealed the significant diagnostic ability of AC099850.3 (AUC=0.888). Functionally, the knockdown of AC099850.3 restrained LUAD cell proliferation and migration in vitro. Finally, we constructed a competitive endogenous RNAs (ceRNA) network that included hsa-miR-101-3p and 4 mRNAs (ESPL1, AURKB, BUB3, and FAM83D) specific to AC099850.3 in LUAD. Kaplan-Meier survival analysis showed that a lower expression of miR-101-3p and a higher expression of ESPL1, AURKB, BUB3, and FAM83D, were associated with adverse clinical outcomes in patients with LUAD. This finding provided a comprehensive view of the AC099850.3-mediated ceRNA network in LUAD, thereby highlighting its potential role in the diagnosis and prognosis of LUAD.

13.
Front Oncol ; 12: 860961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463380

RESUMEN

LncRNA-AC02278.4 (ENSG00000248538) is a long non-coding RNA (lncRNA) found to be highly expressed in multiple human cancers including lung adenocarcinoma (LUAD). However, the underlying biological function and potential mechanisms of AC02278.4 driving the progression of LUAD remain unclear. In this study, we investigated the role of AC02278.4 in LUAD and found that AC02278.4 expression was significantly increased in datasets extracted from The Cancer Genome Atlas. Increased expression of lncRNA-AC02278.4 was correlated with advanced clinical parameters. Receiver operating characteristic (ROC) curve analysis revealed the significant diagnostic ability of AC02278.4 [area under the ROC curve (AUC) = 0.882]. In addition, gene set enrichment analysis (GSEA) enrichment showed that AC02278.4 expression was correlated with immune response-related signaling pathways. Finally, we determined that AC02278.4 regulated cell proliferation and migration of LUAD in vitro. Our clinical sample results also confirmed that AC02278.4 was highly expressed in LUAD and correlated with adverse clinical outcomes. In conclusion, our data demonstrated that AC02278.4 was correlated with progression and immune infiltration and could serve as a prognostic biomarker for LUAD.

14.
Front Oncol ; 12: 862564, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600383

RESUMEN

Purpose: Lung adenocarcinoma (LUAD) is the most common type of cancer and the leading cause of cancer-related death worldwide, resulting in a huge economic and social burden. MiRNA-195-5p plays crucial roles in the initiation and progression of cancer. However, the significance of the miRNA-195-5p/polypyrimidine tract-binding protein 1 (miRNA-195-5p/PTBP1) axis in the progression of lung adenocarcinoma (LUAD) remains unclear. Methods: Data were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The starBase database was employed to examine the expression of miRNA-195-5p, while the Kaplan-Meier plotter, UALCAN, and Gene Expression Profiling Interactive Analysis (GEPIA) databases were utilized to analyze the tumor stage and prognostic value of miRNA and PTBP1. Quantitative reverse transcription-polymerase chain reaction assay was conducted to detect the expression levels of miRNA-195-5p in LUAD cell lines and tissues. The effects of miRNA-195-5p on cell proliferation and migration were examined using the cell growth curve, clone information, transwell assays, and wound healing assays. Results: We found that miRNA-195-5p was down-regulated in LUAD cancer and cell lines. Importantly, its low levels were related to the tumor stage, lymph node metastasis, and poor prognosis in LUAD. Overexpression of miR-195-5p significantly inhibited cell growth and migration promotes cell apoptosis. Further study revealed that PTBP1 is a target gene of miRNA-195-5p, and overexpression of miRNA-195-5p inhibited the progression of LUAD by inhibiting PTBP1 expression. MiRNA-195-5p expression was related to immune infiltration in lung adenocarcinoma. Moreover, PTBP1 was negatively correlated with diverse immune cell infiltration and drug sensitivity. Conclusion: Our findings uncover a pivotal mechanism that miRNA-195-5p by modulate PTBP1 expression to inhibit the progression of LUAD. MiRNA-195-5p could be a novel diagnostic and prognostic molecular marker for LUAD.

15.
Front Mol Biosci ; 9: 895927, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685240

RESUMEN

Long non-coding RNAs (lncRNAs) are tumor-associated biological molecules and have been found to be implicated in the progression of lung adenocarcinoma (LUAD). LncRNA-AP000695.2 (ENSG00000248538) is a long non-coding RNA (lncRNA) that is widely increased in many tumor types including lung adenocarcinoma (LUAD). However, the aberrant expression profile, clinical significance, and biological function of AP000695.2 in human lung adenocarcinoma (LUAD) need to be further investigated. This study mines key prognostic AP000695.2 and elucidates its potential role and molecular mechanism in regulating the proliferation and metastasis of LUAD. Here, we discovered that AP000695.2 was significantly upregulated in lung adenocarcinoma tissues compared with healthy adjacent lung tissue and higher in LUAD cell lines than in normal human bronchial epithelial cell lines. A higher expression of AP000695.2 was positively correlated with aggressive clinicopathological characteristics, and AP000695.2 served as an independent prognostic indicator for the overall survival, disease-free survival, and progression-free survival in patients with LUAD. Receiver operating curve (ROC) analysis revealed the significant diagnostic ability of AP000695.2 (AUC = 0.838). Our in vivo data confirmed that AP000695.2 promotes the proliferation, migration, and invasion of LUAD cells. GSEA results suggested that AP000695.2 co-expressed genes were mainly enriched in immune-related biological processes such as JAK-STAT signaling pathway and toll-like receptor signaling pathway. Single-sample GSEA analysis showed that AP000695.2 is correlated with tumor-infiltrating immune cells in lung adenocarcinoma. Our findings confirmed that AP000695.2 was involved in the progression of lung adenocarcinoma, providing a novel prognostic indicator and promising diagnostic biomarker in the future.

16.
Front Oncol ; 12: 910437, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664767

RESUMEN

Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. NCAPG2 (non-SMC condensin II complex subunit G2) has been shown to be upregulated in various human cancers. Nevertheless, the underlying biological function and potential mechanisms of NCAPG2 driving the progression of LUAD remain unclear. In this study, we investigated the role of NCAPG2 in LUAD and found that the expression of NCAPG2 in LUAD tissues was significantly higher than that of NCAPG2 expression in adjacent normal tissues. Kaplan-Meier survival analysis showed that patients with higher NCAPG2 expression correlated with unfavorable clinical outcomes. Receiver operating characteristic (ROC) curve analysis showed that the AUC value of NCAPG2 was 0.914. Correlation analysis showed that NCAPG2 expression was associated with immune infiltration in LUAD. Finally, we found that AL139385.1 was upregulated in LUAD cancer tissues and cell lines. Knockdown of NCAPG2 inhibited cell proliferation, cell migration, and cell invasion of LUAD in vitro. More importantly, we established the AL035458.2/hsa-miR-181a-5p axis as the most likely upstream ncRNA-related pathway of NCAPG2 in LUAD. In conclusion, our data demonstrated that ncRNA-mediated high expression of NCAPG2 was correlated with progression and immune infiltration, and could serve as a prognostic biomarker for LUAD.

17.
Front Oncol ; 12: 905871, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651789

RESUMEN

Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. LncRNA-AL139385.1 (ENSG00000275880) is a novel lncRNA that is abnormally expressed in various cancer types including LUAD. However, the underlying biological function and potential mechanisms of AL139385.1 driving the progression of LUAD remain unclear. In this study, we investigated the role of AL139385.1 in LUAD and found that DNA hypomethylation was positively correlated with AL139385.1 expression in LUAD. Moreover, we uncover that the expression of AL139385.1 in LUAD tissues was significantly higher than that of AL139385.1 expression in adjacent normal tissues. Kaplan-Meier survival analysis showed that patients with higher AL139385.1 expression correlated with adverse overall survival and progression-free survival. Receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) value of AL139385.1 was 0.808. Correlation analysis showed that AL139385.1 expression was associated with immune infiltration in LUAD. We also found that AL139385.1 was upregulated in LUAD cancer tissues and cell lines. Knockdown of AL139385.1 significantly inhibited cell proliferation and migration abilities of LUAD. Finally, we constructed a ceRNA network that includes hsa-miR-532-5p and four mRNAs (GALNT3, CYCS, EIF5A, and ITGB4) specific to AL139385.1 in LUAD. Subsequent Kaplan-Meier survival analysis suggested that polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), cytochrome c, somatic (CYCS), eukaryotic translation initiation factor 5A (EIF5A), and integrin subunit beta 4 (ITGB4), were potential prognostic biomarkers for patients with LUAD. In conclusion, this finding provides possible mechanisms underlying the abnormal upregulation of AL139385.1 as well as a comprehensive view of the AL139385.1-mediated competing endogenous RNAs (ceRNA) network in LUAD, thereby highlighting its potential role in diagnosis and therapy.

18.
Front Mol Biosci ; 9: 763248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35274003

RESUMEN

IQ motif containing GTPase-activating protein 3 (IQGAP3) is a member of the Rho family of guanosine-5'-triphosphatases (GTPases). IQGAP3 plays a crucial part in the development and progression of several types of cancer. However, the prognostic, upstream-regulatory, and immunological roles of IQGAP3 in human cancer types are not known. We found that IQGAP3 expression was increased in different types of human cancer. The high expression of IQGAP3 was correlated with tumor stage, lymph node metastasis, and a poor prognosis in diverse types of human cancer. The DNA methylation of IQGAP3 was highly and negatively correlated with IQGAP3 expression in diverse cancer types. High DNA methylation in IQGAP3 was correlated with better overall survival in human cancer types. High mRNA expression of IQGAP3 was associated with tumor mutational burden, microsatellite instability, immune cell infiltration, and immune modulators. Analyses of signaling pathway enrichment showed that IQGAP3 was involved in the cell cycle. IQGAP3 expression was associated with sensitivity to a wide array of drugs in cancer cells lines. We revealed that polypyrimidine tract-binding protein 1 (PTBP1) and an IQGAP3-associated lncRNA (IQGAP3AR)/let-7c-5p axis were potential regulations for IQGAP3 expression. We provided the first evidence to show that an IQGAP3AR/let-7c-5p/IQGAP3 axis has indispensable roles in the progression and immune response in different types of human cancer.

19.
Front Oncol ; 12: 898920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592680

RESUMEN

Shugoshin-like protein 1 (SGO1) has been characterized in its function in correct cell division and its role in centrosome cohesion in the nucleus. However, the underlying biological function and potential mechanisms of SGO1 driving the progression of lung adenocarcinoma remain unclear. In this study, we found that SGO1 was increased in LUAD tissues and cell lines. Upregulation of SGO1 expression was correlated with poor overall survival (OS), disease-free survival (DSS), and progression-free survival (PFS) in patients with LUAD. ROC curve analysis suggested that the AUC value of SGO1 was 0.983. Correlation analysis showed that SGO1 expression was related to immune infiltration in LUAD. Meanwhile, a potential ceRNA network was constructed to identify the lncRNA-MIR4435-2HG/miR-125a-5p/SGO1 regulatory axis in LUAD. Finally, we determine that SGO1 regulated the cell proliferation and cell apoptosis of lung adenocarcinoma in vitro. In conclusion, our data suggested that SGO1 could be a novel prognostic biomarker for lung adenocarcinoma.

20.
Front Oncol ; 12: 916947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707363

RESUMEN

Family with sequence similarity 72B (FAM72B) has been characterized in the regulation of neuronal development. Nevertheless, the prognostic value of FAM72B expression and its function in the immune microenvironment of lung adenocarcinoma (LUAD) currently remains elusive. In this study, by adopting bioinformatics methodology and experimental verification, we found that FAM72B was upregulated in lung cancer tissues and cell lines, and a higher FAM72B level predicted an unfavorable clinical outcome in LUAD patients. The knockdown of FAM72B significantly inhibited cell proliferation, cell migration, and induced cell apoptosis in LUAD. The receiver operating characteristic curve suggested that FAM72B had a high predictive accuracy for the outcomes of LUAD. Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analyses confirmed that FAM72B-related genes were involved in cell proliferation and immune-response signaling pathway. Moreover, upregulated FAM72B expression was significantly associated with immune cell infiltration in the LUAD tumor microenvironment. Meanwhile, a potential ceRNA network was constructed to identify the lncRNA-AL360270.2/TMPO-AS1/AC125807.2/has-let-7a/7b/7c/7e/7f/FAM72B regulatory axis that regulates FAM72B overexpression in LUAD and is associated with a poor prognosis. We also confirmed that AL360270.2, TMPO-AS1, and AC125807.2 were significantly upregulated in LUAD cell lines than in human bronchial epithelial cells. In conclusion, FAM72B may serve as a novel biomarker in predicting the clinical prognosis and immune status for lung adenocarcinoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA