Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38176108

RESUMEN

Seawater-flow- and -evaporation-induced electricity generation holds significant promise in advancing next-generation sustainable energy technologies. This method relies on the electrokinetic effect but faces substantial limitations when operating in a highly ion-concentrated environment, for example, natural seawater. We present herein a novel solution using calcium-based metal-organic frameworks (MOFs, C12H6Ca2O19·2H2O) for seawater-evaporation-induced electricity generation. Remarkably, Ca-MOFs show an open-circuit voltage of 0.4 V and a short-circuit current of 14 µA when immersed in seawater under natural conditions. Our experiments and simulations revealed that sodium (Na) ions selectively transport within sub-nanochannels of these synthetic superhydrophilic MOFs. This selective ion transport engenders a unipolar solution flow, which drives the electricity generation behavior in seawater. This work not only showcases an effective Ca-MOF for electricity generation through seawater flow/evaporation but also contributes significantly to our understanding of water-driven energy harvesting technologies and their potential applications beyond this specific context.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA