Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(48): 20261-20271, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992251

RESUMEN

Quantum dots (QDs) are widely applied and inevitably released into the environment. The biotransformation of Se in typical CdSe/ZnS QDs coated with glutathione (CdSe/ZnS-GSH) to volatile alkyl selenides and the fate of alkyl selenides in the hydroponically grown rice system were investigated herein. After a 10-day exposure to CdSe/ZnS-GSH (100 nmol L-1), seven alkyl selenides, dimethyl selenide (DMSe), dimethyl diselenide (DMDSe), methyl selenol (MSeH), ethylmethyl selenide (EMSe), ethylmethyl diselenide (EMDSe), dimethyl selenenyl sulfide (DMSeS), and ethylmethyl selenenyl sulfide (EMSeS), were detected in the exposure system using the suspect screening strategy. CdSe/ZnS-GSH was first biotransformed to DMSe and DMDSe by plant and microorganisms. The generated DMSe was volatilized to the gas phase, adsorbed and absorbed by leaves and stems, downward transported, and released into the hydroponic solution, whereas DMDSe tended to be adsorbed/absorbed by roots and upward transported to stems. The airborne DMSe and DMDSe also partitioned from the gas phase to the hydroponic solution. DMSe and DMDSe in the exposure system were further transformed to DMSeS, EMSeS, EMSe, EMDSe, and MSeH. This study gives a comprehensive understanding on the behaviors of Se in CdSe/ZnS-GSH in a rice plant system and provides new insights into the environmental fate of CdSe/ZnS QDs.


Asunto(s)
Compuestos de Cadmio , Oryza , Puntos Cuánticos , Compuestos de Selenio , Plantones , Compuestos de Zinc , Sulfuros , Biotransformación
2.
Environ Sci Technol ; 56(13): 9486-9496, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35622943

RESUMEN

In this work, a typical congener of short-chain chlorinated paraffins (SCCPs) with six chlorine atoms (CP-4, 1,2,5,6,9,10-C10H16Cl6, 250 ng/mL) was selected to elaborate the comprehensive environmental transformation of SCCPs in rice seedling exposure system. CP-4 was quickly absorbed, translocated, and phytovolatilized by seedlings with a small quality of CP-4 (5.81-36.5 ng) being detected in the gas phase. Only 21.4 ± 1.6% of an initial amount (10,000 ng) of CP-4 remained in the exposure system at the end of exposure. Among the transformed CP-4, some were attributed to the degradation of the rhizosphere microorganism (9.1 ± 5.8%), root exudates (2.2 ± 4.2%), and abiotic transformation (3.0 ± 2.8%) that were proved by several transformation products found in the root exudate exposure groups and unplanted controls, and a majority was phytotransformed by rice seedlings. Here, 61 products were determined through complex transformation pathways, including multihydroxylation, -HCl elimination, dechlorination, acetylation, sulfation, glycosylation, and amide acid conjugation. The acetylated and amide acid conjugates of CPs were first observed. Phase I and Phase II phytometabolic reactions of CPs were found intertwining. These findings demonstrate that multiactive transformation reactions contribute to the overlook of CPs accumulated in plants and are helpful for the environmental and health risk assessments of SCCPs in agricultural plants.


Asunto(s)
Hidrocarburos Clorados , Oryza , Amidas , China , Monitoreo del Ambiente , Hidroponía , Parafina/análisis , Plantones/química
3.
Sci Total Environ ; 938: 173385, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38796010

RESUMEN

Internalization of chemicals and the forage risks of ryegrass under the combined exposure to PAHs and Cd at environmental concentrations were studied here. The effect of soil pH was also concerned due to the widely occurred soil acidification and general alkali remediation for acidification soil. Unexpectedly, as same as the acid-treated group (pH 6.77), the alkali-treatment (pH 8.83) increased Cd uptake compared with original soil pH group (pH 7.92) for the reason of CdOH+ and CdHCO3+ formed in alkali-treated group. Co-exposure to PAHs induced more oxidative stress than Cd exposure alone due to PAHs aggregated in young root regions, such as root tips, and consequently, affecting the expression of Cd-transporters, destroying the basic structure of plant cells, inhibiting the energy supply for the transporters, even triggering programmed cell death, and finally resulting in decreased Cd uptake. Even under environmental concentrations, combined exposure caused potential risks derived from both PAHs and Cd. Especially, ryegrass grown in alkali-treated soil experienced an increased forage risks despite the soil meeting the national standards for Cd at safe levels. These comprehensive results reveal the mechanism of PAHs inhibiting Cd uptake, improve the understanding of bioavailability of Cd based on different forms, provide a theoretical basis to formulate the safety criteria, and guide the application of actual soil management.


Asunto(s)
Cadmio , Lolium , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo , Lolium/efectos de los fármacos , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Suelo/química , Medición de Riesgo
4.
Sci Total Environ ; 903: 166299, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586525

RESUMEN

The unclear multi-media and multi-interface processes of polycyclic aromatic hydrocarbons (PAHs) in environments have drawn great concern. Here, 16 controlled PAHs were selected to reveal the differences in the bioavailability and migration of congeners in soil-ryegrass exposure system. The presence of ryegrass in the exposure groups (with newly introduced PAHs) resulted in a decrease in PAHs dissipation (31.3 %) from soil compared to the unplanted groups (43.2 %). The presence of ryegrass inhibited the soil-air exchange process, which has not been widely reported. PAH congeners with less benzene rings (molecular weight < B[a]A) had consistent bioavailability before and after long-term aging, the competition between adsorption/absorption to plants and soil was not strong (RCFs < 3.5), and their migration in the rhizosphere rapidly reached equilibrium. PAH congeners with more benzene rings (molecular weight ≥ B[a]A) adsorbed to soil particles and significantly decreased their bioavailability after long-term aging. Their concentrations in the rhizosphere were stable and lower than bulk soil, revealing their slow equilibrium process in soil. In addition, PAHs with larger molecular weight and KOW showed less migration at the rhizosphere micro-interface. The migration behavior of congeners with close KOW depended on their molecular structure. Congeners with non-symmetric K-region or L-region showed greater migration ability in the rhizosphere. These findings revealed the fate of PAHs, especially different PAH congeners, in the rhizosphere interfaces for the first time, and explored the molecular mechanisms that affect their rhizosphere behaviors, improving the understanding and knowledge of PAHs in the microenvironment, providing new data on evaluating and controlling the environmental risks of PAHs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA