Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant Dis ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568788

RESUMEN

During summer 2022, a cluster of Madagascar periwinkle plants with white and mauve flowers were observed with foliar mild yellow mosaic symptoms on a private property in Harlingen, Cameron County, Texas. The symptoms were reproduced on mechanically inoculated periwinkle and Nicotiana benthamiana plants. Virions of 776 to 849 nm in length and 11.7 to 14.8 nm in width were observed in transmission electron microscopy of leaf dip preparations made from symptomatic periwinkle leaves. Highthroughput sequencing (HTS) analysis of total RNA extracts from symptomatic leaves revealed the occurrence of two highly divergent variants of a novel Potyvirus species as the only virus-like sequences present in the sample. The complete genomes of both variants were independently amplified via RT-PCR, cloned, and Sanger sequenced. The 5' and 3' of the genomes were acquired using RACE methodology. The assembled virus genomes were 9,936 and 9,944 nucleotides (nt) long and they shared 99.9-100% identities with the respective HTS-derived genomes. Each genome encoded hypothetical polyprotein of 3,171 amino acids (aa) (362.6 kDa) and 3,173 aa (362.7 kDa), respectively, and they shared 77.3%/84.4% nt/aa polyproteins identities, indicating that they represent highly divergent variants of the same Potyvirus species. Both genomes also shared below species threshold polyprotein identity levels with the most closely phylogenetically related known potyviruses thus indicating that they belong to a novel species. The name periwinkle mild yellow mosaic virus (PwMYMV) is given to the potyvirus with complete genomes of 9,936 nt for variant 1 (PwMYMV-1) and 9,944 nt for variant 2 (PwMYMV-2). We propose that PwMYMV be assigned into the genus Potyvirus (family Potyviridae).

2.
Plant Biotechnol J ; 16(6): 1186-1200, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29193665

RESUMEN

Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A ß-carotene. In this study, ß-carotene concentrations in cassava storage roots were enhanced by co-expression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), mediated by the patatin-type 1 promoter. Storage roots harvested from field-grown plants accumulated carotenoids to ≤50 µg/g DW, 15- to 20-fold increases relative to roots from nontransgenic plants. Approximately 85%-90% of these carotenoids accumulated as all-trans-ß-carotene, the most nutritionally efficacious carotenoid. ß-Carotene-accumulating storage roots displayed delayed onset of postharvest physiological deterioration, a major constraint limiting utilization of cassava products. Large metabolite changes were detected in ß-carotene-enhanced storage roots. Most significantly, an inverse correlation was observed between ß-carotene and dry matter content, with reductions of 50%-60% of dry matter content in the highest carotenoid-accumulating storage roots of different cultivars. Further analysis confirmed a concomitant reduction in starch content and increased levels of total fatty acids, triacylglycerols, soluble sugars and abscisic acid. Potato engineered to co-express DXS and crtB displayed a similar correlation between ß-carotene accumulation, reduced dry matter and starch content and elevated oil and soluble sugars in tubers. Transcriptome analyses revealed a reduced expression of genes involved in starch biosynthesis including ADP-glucose pyrophosphorylase genes in transgenic, carotene-accumulating cassava roots relative to nontransgenic roots. These findings highlight unintended metabolic consequences of provitamin A biofortification of starch-rich organs and point to strategies for redirecting metabolic flux to restore starch production.


Asunto(s)
Biofortificación , Metabolismo de los Hidratos de Carbono , Carotenoides/metabolismo , Manihot/química , Raíces de Plantas/química , Ácido Abscísico/metabolismo , Almacenamiento de Alimentos , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Manihot/genética , Manihot/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum/química , Almidón/biosíntesis , Transferasas/genética
3.
PLoS One ; 19(4): e0293861, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603714

RESUMEN

The goal of this study was to characterize the bacterial diversity on different melon varieties grown in different regions of the US, and determine the influence that region, rind netting, and variety of melon has on the composition of the melon microbiome. Assessing the bacterial diversity of the microbiome on the melon rind can identify antagonistic and protagonistic bacteria for foodborne pathogens and spoilage organisms to improve melon safety, prolong shelf-life, and/or improve overall plant health. Bacterial community composition of melons (n = 603) grown in seven locations over a four-year period were used for 16S rRNA gene amplicon sequencing and analysis to identify bacterial diversity and constituents. Statistically significant differences in alpha diversity based on the rind netting and growing region (p < 0.01) were found among the melon samples. Principal Coordinate Analysis based on the Bray-Curtis dissimilarity distance matrix found that the melon bacterial communities clustered more by region rather than melon variety (R2 value: 0.09 & R2 value: 0.02 respectively). Taxonomic profiling among the growing regions found Enterobacteriaceae, Bacillaceae, Microbacteriaceae, and Pseudomonadaceae present on the different melon rinds at an abundance of ≥ 0.1%, but no specific core microbiome was found for netted melons. However, a core of Pseudomonadaceae, Bacillaceae, and Exiguobacteraceae were found for non-netted melons. The results of this study indicate that bacterial diversity is driven more by the region that the melons were grown in compared to rind netting or melon type. Establishing the foundation for regional differences could improve melon safety, shelf-life, and quality as well as the consumers' health.


Asunto(s)
Bacillaceae , Cucumis melo , Cucurbitaceae , Estados Unidos , Cucurbitaceae/microbiología , Cucumis melo/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Enterobacteriaceae
4.
Plant Foods Hum Nutr ; 67(2): 120-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22569831

RESUMEN

Bioactive compounds in foods have been shown to maintain human health. However, the relative amounts of bioactive compounds and the variation in the amounts are still poorly understood. In this study, the efficacy of different extraction solvents (hexane, ethyl acetate, acetone, methanol, and a methanol:water mixture), as well as the levels of certain bioactive compounds in non-pungent pepper cultivars (TMH, TMJ, PA137, and B58) were investigated using high-performance liquid chromatography (HPLC). Antioxidant activities were determined using 2,2,-diphenyl-1-picrylhydrazyl (DPPH), reducing power, and deoxyribose degradation. Hexane extracts had the highest level of carotenoids (47.2-628.8 µg/g), and methanol extracts contained maximum flavonoids (24.9-152.2 µg/g) in four different cultivars. Higher DPPH scavenging activity was found in the hexane extracts from TMH, TMJ, PA137, and B58 (IC50 value: 0.67, 0.74, 0.55, and 0.48 µg/ml, respectively), whereas the reducing power was high in ethyl acetate and acetone extracts. Inhibition of deoxyribose degradation was highest in methanolic extracts from TMH, TMJ, PA137, and B58 (51.2, 49.5, 52.6, and 47.4 %, respectively). These data demonstrate that solvent chemical properties such as polarity can differentially impact the efficiency with which different bioactive compounds are recovered from foods, and this could lead to differences in estimated biological activity such as antioxidant capacity.


Asunto(s)
Antioxidantes/farmacología , Oxidación-Reducción , Piper nigrum/química , Extractos Vegetales/farmacología , Solventes/química , Acetona/química , Antioxidantes/análisis , Compuestos de Bifenilo/metabolismo , Carotenoides/análisis , Carotenoides/farmacología , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Flavonoides/farmacología , Hexanos/química , Metanol/química , Fenoles/análisis , Fenoles/farmacología , Picratos/metabolismo , Verduras/química
5.
Front Plant Sci ; 13: 832522, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712570

RESUMEN

A non-invasive and non-destructive technique, Raman spectroscopy, was explored to distinguish different maturity stages (20, 30, 40, and 50 days after anthesis) of watermelon (Citrullus lanatus) fruits from four cultivars: Fascination, Orange Crisp, Amarillo and Crimson Sweet. Spectral acquisition from the fruit surface was carried out at the wavelength range of 400-2,000 cm-1 using a handheld Raman spectrometer equipped with 830 nm laser excitation source. The spectra were normalized at 1,438 cm-1 which was assigned to CH2 and CH3 vibration. Detecting changes in the spectral features of carotenoids on the surface of watermelon fruits can be used as a marker to monitor the maturity of the fruit. The spectral analysis confirmed the presence of two major carotenoids, lutein and ß-carotene, and their intensity decreased upon maturity on the fruit surface. Identification of these pigments was further confirmed by resonance Raman spectra and high-performance liquid chromatography analysis. Results of partial least square discriminant analysis of pre-processed spectra have demonstrated that the method can successfully predict the maturity of watermelon samples with more than 85% accuracy. Analysis of Variance of individual Raman bands has revealed a significant difference among the stages as the level of carotenoids was declined during the ripening of the fruits. Thus, Raman spectral signatures can be used as a versatile tool for the non-invasive determination of carotenoid changes on the watermelon fruits' surface during ripening, thereby enabling effective monitoring of nutritional quality and maturity indices before harvesting the watermelon.

6.
Plant Sci ; 304: 110809, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33568307

RESUMEN

Melon (Cucumis melo L.) is an important diploid crop with a wide variety of flavors due to its distinct aromatic volatile organic compounds (VOC). To understand the development of VOC profiles during fruit development, we performed metabolomic and transcriptomic analysis of two cantaloupe varieties over the course of fruit development. A total of 130 metabolites were detected in fruit samples, and 449014207 reads were mapped to the melon genome. A total of 4469 differentially expressed genes in fruits were identified and used to visualize the transition of VOC and transcriptomic profiles during the fruit development. A shift of VOC profiles in both varieties was observed from early-fruit profiles enriched in C5-C8 lipid-derived VOCs to late-fruit profiles abundant in C9 lipid-derived VOCs, apocarotenoids, and esters. The shift coincided with the expression of specific isoforms of lipid and carotenoid metabolizing enzymes as well as transcription factors involved in fruit ripening, metabolite regulation, and hormone signaling.


Asunto(s)
Cucurbitaceae/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Compuestos Orgánicos Volátiles/metabolismo , Aminoácidos/metabolismo , Carotenoides/metabolismo , Cromatografía Líquida de Alta Presión , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Frutas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Familia de Multigenes , Reacción en Cadena de la Polimerasa , ARN de Planta/genética , Alineación de Secuencia , Transcriptoma
7.
Virus Res ; 293: 198266, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33347906

RESUMEN

Melon is one of the most popular fruits worldwide and has been bred into various cultivars. RNA-sequencing using healthy melon fruit was performed to determine differences in gene expression among cultivars. Unexpected RNA-seq results revealed that viruses asymptomatically infected fruits at a high frequency (16 of 21 fruits examined were infected) and that viral transcripts highly accumulated in comparison with host transcripts (15 %-75 % of total reads). Their nucleotide sequences and phylogenetic analyses indicated that more than 10 novel isolates of tobacco ringspot virus (TRSV) were found in melon fruits. Asymptomatic infection with TRSV on melon fruits was confirmed by both immunoblot and RT-PCR analyses. Numerous isolates of TRSV generated and maintained in melon fields, and this is likely due to their asymptomatic infections. This TRSV melon isolate infected Nicotiana benthamiana plants with stunting and yellowing symptoms. This is the first report of frequent and asymptomatic infection of TRSV in consumable melon fruits.


Asunto(s)
Cucurbitaceae , Nepovirus , Frutas , Filogenia , Enfermedades de las Plantas
8.
Genome ; 53(10): 840-7, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20962891

RESUMEN

The availability of a wider range of promoters for regulated expression in valuable transgenic crops would benefit functional genomics studies and current biotechnology programs aimed at improved productivity. Polymerase chain reaction (PCR)-based genome walking techniques are commonly used to isolate promoters or 5' flanking genomic regions adjacent to known cDNA sequences in genomes that are not yet completely sequenced. However, these techniques are problematic when applied directly to DNA isolated from crops with highly complex and large genomes. An adaptor ligation-mediated PCR-based BAC genome walking method is described here for the efficient isolation of promoters of multigene family members, such as the putative defense and fiber biosynthesis DIRIGENT genes that are abundant in the stem of sugarcane, a species with a highly polyploid genome. The advantage of this method is the efficient and specific amplification of the target promoter using BAC genomic DNA as template for the adaptor ligation-mediated PCR walking.


Asunto(s)
Paseo de Cromosoma/métodos , Cromosomas Artificiales Bacterianos/genética , Genoma de Planta , Poliploidía , Regiones Promotoras Genéticas , Saccharum/genética , Algoritmos , Mapeo Cromosómico/métodos , Clonación Molecular/métodos , ADN de Plantas/análisis , ADN de Plantas/genética , Familia de Multigenes/genética , Reacción en Cadena de la Polimerasa/métodos , Regiones Promotoras Genéticas/genética
9.
Sci Rep ; 10(1): 5037, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193449

RESUMEN

Seed priming uses treatments to improve seed germination and thus potentially increase growth and yield. Low-cost, environmentally friendly, effective seed treatment remain to be optimized and tested for high-value specialty crop like watermelon (Citrullus lanatus) in multi-locations. This remains a particularly acute problem for triploids, which produce desirable seedless watermelons, but show low germination rates. In the present study, turmeric oil nanoemulsions (TNE) and silver nanoparticles (AgNPs) synthesized from agro-industrial byproducts were used as nanopriming agents for diploid (Riverside) and triploid (Maxima) watermelon seeds. Internalization of nanomaterials was confirmed by neutron activation analysis, transmission electron microscopy, and gas chromatography-mass spectrometry. The seedling emergence rate at 14 days after sowing was significantly higher in AgNP-treated triploid seeds compared to other treatments. Soluble sugar (glucose and fructose) contents were enhanced during germination in the AgNP-treated seeds at 96 h. Seedlings grown in the greenhouse were transplanted at four locations in Texas: Edinburg, Pecos, Grapeland, and Snook in 2017. At Snook, higher yield 31.6% and 35.6% compared to control were observed in AgNP-treated Riverside and Maxima watermelons, respectively. To validate the first-year results, treated and untreated seeds of both cultivars were sown in Weslaco, Texas in 2018. While seed emegence and stand establishments were enhanced by seed priming, total phenolics radical-scavenging activities, and macro- and microelements in the watermelon fruits were not significantly different from the control. The results of the present study demonstracted that seed priming with AgNPs can enhance seed germination, growth, and yield while maintaining fruit quality through an eco-friendly and sustainable nanotechnological approach.


Asunto(s)
Citrullus/crecimiento & desarrollo , Producción de Cultivos/métodos , Curcuma/química , Germinación , Nanopartículas , Nanoestructuras , Nanotecnología/métodos , Aceites de Plantas/farmacología , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Plata/farmacología , Citrullus/fisiología , Emulsiones , Calidad de los Alimentos , Aceites de Plantas/aislamiento & purificación , Plantones/fisiología , Semillas/fisiología , Texas
10.
Sci Rep ; 10(1): 13535, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32782333

RESUMEN

Grafting with vigorous rootstocks could offer tomato growers in Texas sustainable and efficient option to achieve reliable yield across a range of production systems and locations. Genotypes (G) of grafted and non-grafted tomato were grown in different environments (E) in the 2017 and 2018 spring seasons. The objectives of the study were to (i) evaluate the effects of production system and grafting on tomato yield traits, (ii) determine the size of genotypic and genotype by environment interaction (G × E) variance components, and (iii) evaluate the relative stability of tested genotypes for yield and its components across production environments. In 2017, genotypes were non-grafted 'TAMU Hot Ty' (TAM) and 'Tycoon' (TY) and each grafted on commercial tomato rootstocks 'Estamino' (TAM/ES, TY/ES) and 'Multifort' (TAM/MU, TY/MU) while in 2018, TAM and 'HM1823' (HM) were grafted on 'Estamino' (TAM/ES, HM/ES) and 'Multifort' (TAM/MU, HM/MU). Testing environments were high tunnel (HT) and open-field (OF) in Uvalde in 2017 while in 2018, these were HT and OF in Lubbock (LU-HT, LU-OF), Overton (OV-HT, OV-OF), Uvalde (UV-HT, UV-OF), and Weslaco (WE-HT, WE-OF). Total and marketable yields, fruit number per plant, and average fruit weight were significantly affected by E, G, and G × E interaction. Environmental component contributed 71-86% to the total variation for all these traits, while genotype explained 1.5-10.8%, and the contribution of G × E ranged between 4.3 to 6.7%. Estimation of the univariate statistic parameters and genotype plus genotype × environment (GGE) biplot analysis indicated that HM/MU and HM/ES were the most stable graft combination with the highest total and marketable yields, while TAM/ES was very unstable for yields across test environments. TAM/MU was stable but with yield lower than the grand mean. These results suggest that high tomato yields could be consistently achieved with grafted combination (HM/MU and HM/ES) especially under high tunnel production system across the regions of Texas.


Asunto(s)
Frutas/crecimiento & desarrollo , Interacción Gen-Ambiente , Genotipo , Fenotipo , Solanum lycopersicum/crecimiento & desarrollo , Frutas/genética , Solanum lycopersicum/genética , Estaciones del Año , Texas
11.
Sci Rep ; 10(1): 13713, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792533

RESUMEN

Plants represent a safe and cost-effective platform for producing high-value proteins with pharmaceutical properties; however, the ability to accumulate these in commercially viable quantities is challenging. Ideal crops to serve as biofactories would include low-input, fast-growing, high-biomass species such as sugarcane. The objective of this study was to develop an efficient expression system to enable large-scale production of high-value recombinant proteins in sugarcane culms. Bovine lysozyme (BvLz) is a potent broad-spectrum antimicrobial enzyme used in the food, cosmetics and agricultural industries. Here, we report a novel strategy to achieve high-level expression of recombinant proteins using a combinatorial stacked promoter system. We demonstrate this by co-expressing BvLz under the control of multiple constitutive and culm-regulated promoters on separate expression vectors and combinatorial plant transformation. BvLz accumulation reached 1.4% of total soluble protein (TSP) (10.0 mg BvLz/kg culm mass) in stacked multiple promoter:BvLz lines, compared to 0.07% of TSP (0.56 mg/kg) in single promoter:BvLz lines. BvLz accumulation was further boosted to 11.5% of TSP (82.5 mg/kg) through event stacking by re-transforming the stacked promoter:BvLz lines with additional BvLz expression vectors. The protein accumulation achieved with the combinatorial promoter stacking expression system was stable in multiple vegetative propagations, demonstrating the feasibility of using sugarcane as a biofactory for producing high-value proteins and bioproducts.


Asunto(s)
Muramidasa/metabolismo , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Saccharum/genética , Transformación Genética , Animales , Bovinos , Muramidasa/genética , Muramidasa/aislamiento & purificación , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Saccharum/crecimiento & desarrollo
12.
Plant Foods Hum Nutr ; 64(3): 205-11, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19529987

RESUMEN

Muskmelons (Cucumis melo L.) are well-known as excellent sources of several vitamins, minerals and non-enzymatic antioxidant phytochemicals such as vitamin C and pro-vitamin A. Less well-studied is their potential role as sources of enzymatic antioxidants such as superoxide dismutase (SOD), which have been associated with enhanced reactive oxygen species scavenging capacity in some muskmelon fruits. In this study, we investigated the variability in SOD activities among diverse advanced breeding lines and commercial muskmelon cultivars grown in two different soil types-clay or sandy loam. Specific and total SOD activities varied significantly among the genotypes (P

Asunto(s)
Antioxidantes/metabolismo , Cucumis melo/enzimología , Frutas/enzimología , Extractos Vegetales/metabolismo , Superóxido Dismutasa/metabolismo , Antioxidantes/aislamiento & purificación , Cucumis melo/genética , Variación Genética , Genotipo , Extractos Vegetales/química , Suelo , Superóxido Dismutasa/aislamiento & purificación
13.
Plants (Basel) ; 8(12)2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783689

RESUMEN

High temperatures and drought are common stresses limiting crop growth and productivity in subtropical regions where citrus are produced. In addition to impacts on physiological processes such as transpiration, photosynthesis, and respiration, excessive solar radiation can also reduce fruit productivity by inducing physiological disorders such as sunburn. This study evaluated the effects of radiation reflectants and anti-transpirants on leaf physiology, and fruit sunburn in grapefruit trees (Citrus x paradisi Macfs. cv. Rio Red) in south Texas during the 2016 and 2017 growing seasons. Two calcium-based reflectants, and a methene/pinolene-based anti-transpirant were foliar applied to fruit-bearing trees. Reflectants reduced fruit and leaf temperatures by 0.2°C and 0.21°C, respectively, while the anti-transpirant treatments increased fruit and leaf temperature by approximately 0.83°C and 0.2°C relative to the controls. Stomatal conductance decreased by 1.3% and 3.3%, respectively, in response to the reflectant treatments, while anti-transpirant treatments resulted in decreased stomatal conductance (8.3%) relative to the controls. More sunburned fruit were found in anti-transpirant treated trees in both years (6% and 8.2% for 2016 and 2017) and the reflectant treatments reduced sunburn incidence by 4.9% and 1.8% in those years. These observations indicate that reflectant applications could be a viable strategy to mitigate heat/radiation stress and sunburn in grapefruit.

14.
Sci Rep ; 8(1): 4415, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535363

RESUMEN

Sugarcane is among the most efficient crops in converting solar energy into chemical energy. However, due to its complex genome structure and inheritance, the genetic and molecular basis of biomass yield in sugarcane is still largely unknown. We created an F2 segregating population by crossing S. officinarum and S. spontaneum and evaluated the biomass yield of the F2 individuals. The F2 individuals exhibited clear transgressive segregation in biomass yield. We sequenced transcriptomes of source and sink tissues from 12 selected extreme segregants to explore the molecular basis of high biomass yield for future breeding of high-yielding energy canes. Among the 103,664 assembled unigenes, 10,115 and 728 showed significant differential expression patterns between the two extreme segregating groups in the top visible dewlap leaf and the 9th culm internode, respectively. The most enriched functional categories were photosynthesis and fermentation in the high-biomass and the low-biomass groups, respectively. Our results revealed that high-biomass yield was mainly determined by assimilation of carbon in source tissues. The high-level expression of fermentative genes in the low-biomass group was likely induced by their low-energy status. Group-specific expression alleles which can be applied in the development of new high-yielding energy cane varieties via molecular breeding were identified.


Asunto(s)
Biomasa , Perfilación de la Expresión Génica , Fotosíntesis , Saccharum/genética , Saccharum/metabolismo , Transcriptoma , Alelos , Evolución Biológica , Biología Computacional/métodos , Metabolismo Energético , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Redes y Vías Metabólicas , Anotación de Secuencia Molecular
16.
PLoS One ; 12(12): e0187921, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29236706

RESUMEN

Huanglongbing is a devastating disease of citrus. In this study, a comprehensive profile of phloem sap amino acids (AA) in four permissive host plants of Candidatus Liberibacter asiaticus (CLas) and three non-permissive Rutaceae plants was conducted to gain a better understanding of host factors that may promote or suppress the bacterium. The AA profiles of Diaphorina citri nymphs and adults were similarly analyzed. A total of 38 unique AAs were detected in phloem sap of the various plants and D. citri samples, with phloem sap of young shoots containing more AAs and at higher concentrations than their mature counterparts. All AAs detected in phloem sap of non-permissive plants were also present in CLas -permissive hosts plus additional AAs in the latter class of plants. However, the relative composition of 18 commonly shared AAs varied between CLas -permissive hosts and non-permissive plants. Multivariate analysis with a partial least square discriminant methodology revealed a total of 12 AAs as major factors affecting CLas host status, of which seven were positively related to CLas tolerance/resistance and five positively associated with CLas susceptibility. Most of the AAs positively associated with CLas susceptibility were predominantly of the glutamate family, notably stressed-induced AAs such as arginine, GABA and proline. In contrast, AAs positively correlated with CLas tolerance/resistance were mainly of the serine family. Further analysis revealed that whereas the relative proportions of AAs positively associated with CLas susceptibility did not vary with host developmental stages, those associated with CLas tolerance/resistance increased with flush shoot maturity. Significantly, the proline-to-glycine ratio was determined to be an important discriminating factor for CLas permissivity with higher values characteristic of CLas -permissive hosts. This ratio could be exploited as a biomarker in HLB-resistance breeding programs.


Asunto(s)
Aminoácidos/química , Citrus/microbiología , Enfermedades de las Plantas/microbiología , Rhizobiaceae/química , Aminoácidos/aislamiento & purificación , Floema
17.
J Photochem Photobiol B ; 161: 328-34, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27295414

RESUMEN

The influence of spectral light on leaf quality and phytochemical contents and composition of aroma compounds in coriander leaves grown for fresh use under photo-selective nets; pearl net [40% shading; and 3.88 blue/red ratio; 0.21 red/far red ratio; photosynthetic radiation (PAR) 233.24 (µmolm(-2)s(-1))] and red net [40% shading and 0.57 blue/red ratio; 0.85 red/far red ratio; 221.67 (µmolm(-2)s(-1))] were compared with commercially used black nets [25% shading; 3.32 blue/red ratio 0.96 red/far red ratio; 365.26 (µmolm(-2)s(-1))] at harvest and after 14days of storage. Black nets improved total phenols, flavonoid (quercetin) content, ascorbic acid content, and total antioxidant activity in coriander leaves at harvest. The characteristic leaf aroma compound decanal was higher in leaves from the plants under the red nets at harvest. However, coriander leaves from plants produced under red nets retained higher total phenols, flavonoids (quercetin) and antioxidant scavenging activity 14days after postharvest storage (0°C, 10days, 95% RH and retailers' shelf at 15°C for 4days, 75% RH). But production under the pearl nets improved marketable yield reduced weight loss and retained overall quality, ascorbic acid content and aroma volatile compounds in fresh coriander leaves after postharvest storage. Pearl nets thus have the potential as a pre-harvest tool to enhance the moderate retention of phytochemicals and saleable weight for fresh coriander leaves during postharvest storage.


Asunto(s)
Coriandrum/química , Fitoquímicos/análisis , Compuestos Orgánicos Volátiles/análisis , Antioxidantes/análisis , Antioxidantes/química , Frío , Coriandrum/metabolismo , Luz , Espectrometría de Masas , Fenoles/análisis , Fenoles/química , Fitoquímicos/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Quercetina/análisis , Factores de Tiempo , Compuestos Orgánicos Volátiles/química
18.
J Econ Entomol ; 109(5): 1973-1978, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27451998

RESUMEN

The Asian citrus psyllid preferentially feeds and exclusively reproduces on young, newly emerged flush shoots of citrus. Asian citrus psyllid nymphs feed and complete their life stages on these flush shoots. Recent studies conducted under greenhouse conditions have shown that the transmission rates of 'Candidatus Liberibacter asiaticus' (CLas), the putative causal agent of huanglongbing disease of citrus, are enhanced when flush shoots are present. However, it is unclear if CLas acquisition by migrant adult Asian citrus psyllids is similarly enhanced. To address this knowledge gap, cohorts of Asian citrus psyllid adults were allowed 1-wk acquisition access period (AAP) on flushing and nonflushing shoots of qPCR-tested symptomatic (CLas+) and asymptomatic (CLas-) 10-yr-old sweet orange trees under field conditions. After the AAP, they were tested for CLas by qPCR. Progeny Asian citrus psyllid adults that emerged 4 wk post-AAP were similarly retrieved and tested. Eighty percent of flushing and 30% of nonflushing CLas+ trees produced infective Asian citrus psyllid adults, indicating that flush shoots have greater potential to be inoculum sources for CLas acquisition. Concomitantly, 21.1% and 6.0% infective adults were retrieved, respectively, from flushing and nonflushing CLas+ trees, indicating that Asian citrus psyllid adults acquire CLas more efficiently from flush shoots relative to mature shoots. In addition, 12.1% of infective Asian citrus psyllid adult progeny were obtained from 70% of flushing CLas+ trees. Significantly lower mean Ct values were also obtained from infective adults retrieved from flushing relative to nonflushing trees. The results underscore the role of flush shoots in CLas acquisition and the need to protect citrus trees from Asian citrus psyllid infestations during flush cycles.


Asunto(s)
Citrus/microbiología , Hemípteros/microbiología , Hemípteros/fisiología , Enfermedades de las Plantas/microbiología , Rhizobiaceae/fisiología , Animales , Conducta Alimentaria , Femenino , Masculino
19.
PLoS One ; 11(12): e0168997, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28030637

RESUMEN

Studies were conducted to relate the influence of the physical characteristics, leaf nutrient content and phloem sap amino acid concentration of citrus flush shoots on the densities of various Diaphorina citri life stages. Adult D. citri preferentially selected young shoots for feeding and numbers of D. citri immatures were positively correlated with flush shoot softness. Young flush shoots had higher concentrations of macro and micro nutrients relative to mature ones and this was associated with higher densities of all D. citri life stages. All D. citri life stages were positively correlated with higher nitrogen-carbon (N:C), nitrogen:sulfur (N:S) and nitrogen:calcium (N:Ca) ratios in leaf tissue, while densities of adults were negatively related to calcium, manganese and boron levels. Concentrations of total and essential amino acids were highest in phloem sap of young expanding flush shoots in both grapefruit and lemon, but dramatically declined as flush shoots matured. The sulfur-containing amino acids cystine, methionine and taurine occurred only in younger flush shoots. In contrast, cystathionine was only present in phloem sap of mature shoots. These results clearly indicate that young citrus flush shoots are a nutritionally richer diet relative to mature shoots, thus explaining their preference by D. citri for feeding and reproduction. Conversely, tissue hardness and the lower nutritional quality of mature flush shoots may limit oviposition and immature development. The data suggest that both physical characteristics and nutritional composition of flush shoots and their phloem sap are important factors regulating host colonization and behavior of D. citri, and this interaction can impact the dynamics and spread of HLB in citrus groves.


Asunto(s)
Citrus/parasitología , Hemípteros/fisiología , Interacciones Huésped-Parásitos , Hojas de la Planta/parasitología , Control de Calidad , Animales , Dinámica Poblacional
20.
Food Chem ; 173: 951-6, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25466111

RESUMEN

Postharvest responses of red ('HTSP-3') and yellow ('Celaya') sweet pepper fruit yield, quality parameters and bioactive compounds (to three types of photo-selective nets and a standard black net) were investigated in this study. Red and yellow peppers produced under the black net retained higher ß-carotene, lower total phenolic contents and showed deep red and orange colour after storage. Both peppers produced under the pearl net retained a higher ascorbic content, antioxidant scavenging activity, fruit firmness and also reduced weight loss after storage. Red and yellow peppers grown under pearl and yellow nets resulted in a higher percentage of marketable fruit, after storage. Red pepper grown under the yellow net showed a higher number of odour active aroma compounds in the fruit, while black nets significantly affected the synthesis of odour active aroma compounds during storage. Sensory analysis indicated a preference for red pepper fruits after storage from plants grown under pearl nets.


Asunto(s)
Capsicum/crecimiento & desarrollo , Capsicum/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Capsicum/efectos de la radiación , Almacenamiento de Alimentos , Oxidación-Reducción , Fenoles/metabolismo , beta Caroteno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA