Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Am J Physiol Endocrinol Metab ; 310(9): E762-73, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26956187

RESUMEN

ApoE-null (ApoE-KO) mice fed a high-fat diet (HFD) develop atherosclerosis, due in part to activation of vascular inflammation by oxidized low-density lipoprotein. Since bone loss also occurs in these mice, we used them to investigate the impact of oxidized lipids on bone homeostasis and to search for underlying pathogenic pathways. Four-month-old female ApoE-KO mice fed a HFD for three months exhibited increased levels of oxidized lipids in bone, as well as decreased femoral and vertebral trabecular and cortical bone mass, compared with ApoE-KO mice on normal diet. Despite HFD-induced increase in expression of Alox15, a lipoxygenase that oxidizes LDL and promotes atherogenesis, global deletion of this gene failed to ameliorate the skeletal impact of HFD. Osteoblast number and function were dramatically reduced in trabecular and cortical bone of HFD-fed mice, whereas osteoclast number was modestly reduced only in trabecular bone, indicating that an imbalance in favor of osteoclasts was responsible for HFD-induced bone loss. These changes were associated with decreased osteoblast progenitors and increased monocyte/macrophages in the bone marrow as well as increased expression of IL-1ß, IL-6, and TNF. HFD also attenuated Wnt signaling as evidenced by reduced expression of Wnt target genes, and it decreased expression of pro-osteoblastogenic Wnt ligands. These results suggest that oxidized lipids decrease bone mass by increasing anti-osteoblastogenic inflammatory cytokines and decreasing pro-osteoblastogenic Wnt ligands.


Asunto(s)
Aorta/patología , Apolipoproteínas E/genética , Aterosclerosis/genética , Enfermedades Óseas Metabólicas/genética , Huesos/inmunología , Osteogénesis , Proteínas Wnt/genética , Absorciometría de Fotón , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Aterosclerosis/inmunología , Aterosclerosis/patología , Western Blotting , Densidad Ósea , Enfermedades Óseas Metabólicas/diagnóstico por imagen , Enfermedades Óseas Metabólicas/inmunología , Enfermedades Óseas Metabólicas/patología , Huesos/diagnóstico por imagen , Huesos/metabolismo , Huesos/patología , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/inmunología , Hueso Esponjoso/metabolismo , Hueso Esponjoso/patología , Recuento de Células , Hueso Cortical/efectos de los fármacos , Hueso Cortical/inmunología , Hueso Cortical/metabolismo , Hueso Cortical/patología , Dieta Alta en Grasa , Femenino , Fémur/diagnóstico por imagen , Fémur/inmunología , Fémur/metabolismo , Fémur/patología , Citometría de Flujo , Separación Inmunomagnética , Inflamación , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Lipoproteínas LDL/metabolismo , Macrófagos/inmunología , Ratones , Ratones Noqueados , Monocitos/inmunología , Osteoblastos/citología , Osteoclastos/citología , Porosidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/inmunología , Columna Vertebral/metabolismo , Columna Vertebral/patología , Factor de Necrosis Tumoral alfa/genética
2.
Curr Osteoporos Rep ; 14(1): 16-25, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26909563

RESUMEN

The decrease in bone mass and strength during aging has multiple causes. Osteocytes are long-lived cells within the bone matrix that perform a variety of functions, including the control of bone remodeling. Because of their longevity, osteocytes are more likely than osteoclasts or osteoblasts to accumulate molecular damage over time. Osteocytes utilize quality-control pathways like autophagy to remove damaged organelles and macromolecules, and thereby maintain function. When the damage is excessive, cell death pathways such as apoptosis minimize the impact of potential osteocyte dysfunction on the skeleton. The goal of this review is to discuss how dysregulation of these pathways in osteocytes may contribute to the decline in bone mass and strength with age.


Asunto(s)
Envejecimiento/metabolismo , Apoptosis , Autofagia , Remodelación Ósea , Osteocitos/metabolismo , Osteoporosis/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Marcadores Genéticos , Humanos , Osteocitos/citología , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Transducción de Señal , Soporte de Peso
3.
J Cell Biochem ; 116(1): 58-66, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25145595

RESUMEN

Hematopoietic stem cell (HSC) self-renewal is regulated by osteoblast and/or endothelial cells within the hematopoietic niche. However, the true identity of the supporting cells and the nature of the secreted factors remain uncertain. We developed a novel mouse model and analyzed whether circulating human peripheral hematopoietic lineage negative/AP+ (lin-/AP+) cells support hematopoiesis in vivo. Thus, immunocompromised (Rag) mice expressing thymidine kinase (Tk) under the control of the 3.6Col1α1 promoter (Tk-Rag) were treated with ganciclovir, resulting in osteoblast progenitor cell ablation and subsequent loss of hematopoiesis (evaluated by measuring mouse Ter119+ erythroid cells). Following hematopoietic cell depletion, human bone marrow-derived marrow stromal cells (MSCs) or lin-/AP+ cells were infused into Tk-Rag mice and compared with saline infusions. Ganciclovir significantly reduced (7.4-fold) Ter119+ cells in the bone marrow of Tk-Rag mice compared to saline injections. Infusion of either MSCs or lin-/AP+ cells into ganciclovir-treated mice resulted in a 3.3-fold and 2.7-fold increase (P < 0.01), respectively, in Ter119+ cells compared to mice receiving saline. Relative to lin-/AP- cells, lin-/AP+ cells expressed high levels of mesenchymal, endothelial, and hematopoiesis supporting genes. Thus, human peripheral blood lin-/AP+ cells represent a novel cell type capable of supporting hematopoiesis in a manner comparable to MSCs.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/fisiología , Linaje de la Célula , Femenino , Citometría de Flujo , Ganciclovir/farmacología , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones
4.
J Biol Chem ; 288(24): 17432-40, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23645674

RESUMEN

Bone mass declines with age but the mechanisms responsible remain unclear. Here we demonstrate that deletion of a conditional allele for Atg7, a gene essential for autophagy, from osteocytes caused low bone mass in 6-month-old male and female mice. Cancellous bone volume and cortical thickness were decreased, and cortical porosity increased, in conditional knock-out mice compared with control littermates. These changes were associated with low osteoclast number, osteoblast number, bone formation rate, and wall width in the cancellous bone of conditional knock-out mice. In addition, oxidative stress was higher in the bones of conditional knock-out mice as measured by reactive oxygen species levels in the bone marrow and by p66(shc) phosphorylation in L6 vertebra. Each of these changes has been previously demonstrated in the bones of old versus young adult mice. Thus, these results demonstrate that suppression of autophagy in osteocytes mimics, in many aspects, the impact of aging on the skeleton and suggest that a decline in autophagy with age may contribute to the low bone mass associated with aging.


Asunto(s)
Fémur/metabolismo , Vértebras Lumbares/metabolismo , Osteocitos/fisiología , Envejecimiento , Animales , Autofagia , Proteína 7 Relacionada con la Autofagia , Densidad Ósea , Diferenciación Celular , Células Cultivadas , Femenino , Fémur/diagnóstico por imagen , Fémur/patología , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Osteoblastos/fisiología , Osteoclastos/fisiología , Estrés Oxidativo , Radiografía , Especies Reactivas de Oxígeno/metabolismo
5.
FASEB J ; 25(5): 1474-85, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21248241

RESUMEN

This study aimed to determine whether aging negatively affects MSC replication and osteogenesis and whether these features could be altered by exposure to an extracellular matrix (ECM) generated by marrow cells from young or old mice. A cell-free ECM was prepared from cultured femoral marrow cells from either 3- or 18-mo-old C57BL/6 mice (young-ECM or old-ECM, respectively). The replication and osteogenesis of young or old MSCs maintained on young-ECM vs. old-ECM as well as plastic were examined in vitro and in vivo. We found that the frequency of MSCs in marrow from old mice, measured by colony-forming cells, was only marginally lower than that of young mice. In contrast, defects in the self-renewal and bone formation capacity of old MSCs were remarkable. These defects were corrected by provision of a young-ECM but not old-ECM. In parallel cultures maintained on a young-ECM, the intracellular levels of reactive oxygen species from both old and young mice were reduced 30-50% compared to those maintained on old-ECM or plastic. We concluded that aging negatively affects the formation of an ECM that normally preserves MSC function, and aged MSCs can be rejuvenated by culture on a young-ECM.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteogénesis/fisiología , Especies Reactivas de Oxígeno/metabolismo
6.
J Bone Miner Res ; 36(1): 170-185, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32990984

RESUMEN

Oxidized phospholipids containing phosphocholine (OxPL) are pro-inflammatory lipid peroxidation products that bind to scavenger receptors (SRs), such as Scarb1, and toll-like receptors (TLRs). Excessive OxPL, as found in oxidized low-density lipoprotein (OxLDL), overwhelm these defense mechanisms and become pathogenic in atherosclerosis, nonalcoholic steatohepatitis (NASH), and osteoporosis. We previously reported that the innate IgM natural antibody E06 binds to OxPL and neutralizes their deleterious effects; expression of the single-chain (scFv) form of the antigen-binding domain of E06 (E06-scFv) as a transgene increases trabecular bone in male mice. We show herein that E06-scFv increases trabecular and cortical bone in female and male mice by increasing bone formation and decreasing osteoblast apoptosis in vivo. Homozygous E06-scFv mice have higher bone mass than hemizygous, showing a dose effect of the transgene. To investigate how OxPL restrain bone formation under physiologic conditions, we measured the levels of SRs and TLRs that bind OxPL. We found that osteoblastic cells primarily express Scarb1. Moreover, OxLDL-induced apoptosis and reduced differentiation were prevented in bone marrow-derived or calvaria-derived osteoblasts from Scarb1 knockout mice. Because Scarb1-deficient mice are reported to have high bone mass, our results suggest that E06 may promote bone anabolism in healthy young mice, at least in part, by neutralizing OxPL, which in turn promote Scarb1-mediated apoptosis of osteoblasts or osteoblast precursors. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..


Asunto(s)
Osteogénesis , Fosfolípidos , Animales , Anticuerpos Neutralizantes , Femenino , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción
7.
J Biol Chem ; 284(40): 27438-48, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19657144

RESUMEN

Loss of bone mass with advancing age in mice is because of decreased osteoblast number and is associated with increased oxidative stress and decreased canonical Wnt signaling. However, the underlying mechanisms are poorly understood. We report an age-related increase in the lipid oxidation product 4-hydroxynonenal (4-HNE) as well as increased expression of lipoxygenase and peroxisome proliferator-activated receptor-gamma (PPARgamma) in the murine skeleton. These changes together with decreased Wnt signaling are reproduced in 4-month-old mice bearing a high expressing allele of the lipoxygenase Alox15. The addition of 4-HNE to cultured osteoblastic cells increases oxidative stress, which in turn diverts beta-catenin from T-cell-specific transcription factors to Forkhead box O (FoxO) transcription factors, thereby attenuating the suppressive effect of beta-catenin on PPARgamma gene expression. Oxidized lipids, acting as ligands of PPARgamma, promote binding of PPARgamma2 to beta-catenin and reduce the levels of the latter, and they attenuate Wnt3a-stimulated proliferation and osteoblast differentiation. Furthermore, oxidized lipids and 4-HNE stimulate apoptosis of osteoblastic cells. In view of the role of oxidized lipids in atherogenesis, the adverse effects of lipoxygenase-mediated lipid oxidation on the differentiation and survival of osteoblasts may provide a mechanistic explanation for the link between atherosclerosis and osteoporosis.


Asunto(s)
Regulación de la Expresión Génica , Metabolismo de los Lípidos , Osteogénesis , Estrés Oxidativo , PPAR gamma/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Aldehídos/farmacología , Alelos , Animales , Apoptosis , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Huesos/citología , Huesos/efectos de los fármacos , Huesos/metabolismo , Bovinos , Recuento de Células , Línea Celular , Supervivencia Celular , Femenino , Regulación Enzimológica de la Expresión Génica , Masculino , Ratones , Complejos Multienzimáticos/genética , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , PPAR gamma/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
8.
Mol Cell Biol ; 27(4): 1516-30, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17158928

RESUMEN

Estrogens control gene transcription by cis or trans interactions of the estrogen receptor (ER) with target DNA or via the activation of cytoplasmic kinases. We report that selective activation of kinase-mediated actions of the ER with 4-estren-3alpha,17beta-diol (estren) or an estradiol-dendrimer conjugate, each a synthetic compound that stimulates kinase-mediated ER actions 1,000 to 10,000 times more potently than direct DNA interactions, induced osteoblastic differentiation in established cell lines of uncommitted osteoblast precursors and primary cultures of osteoblast progenitors by stimulating Wnt and BMP-2 signaling in a kinase-dependent manner. In sharp contrast, 17beta-estradiol (E(2)) suppressed BMP-2-induced osteoblast progenitor commitment and differentiation. Consistent with the in vitro findings, estren, but not E(2), stimulated Wnt/beta-catenin-mediated transcription in T-cell factor-lacZ transgenic mice. Moreover, E(2) stimulated BMP signaling in mice in which ERalpha lacks DNA binding activity and classical estrogen response element-mediated transcription (ERalpha(NERKI/-)) but not in wild-type controls. This evidence reveals for the first time the existence of a large signalosome in which inputs from the ER, kinases, bone morphogenetic proteins, and Wnt signaling converge to induce differentiation of osteoblast precursors. ER can either induce it or repress it, depending on whether the activating ligand (and presumably the resulting conformation of the receptor protein) precludes or accommodates ERE-mediated transcription.


Asunto(s)
Diferenciación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Osteoblastos/citología , Osteoblastos/enzimología , Receptores de Estrógenos/metabolismo , Animales , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Dihidrotestosterona/farmacología , Activación Enzimática/efectos de los fármacos , Estradiol/farmacología , Estrenos/farmacología , Femenino , Humanos , Masculino , Ratones , Osteoblastos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Receptores Androgénicos/metabolismo , Elementos de Respuesta/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
9.
FASEB Bioadv ; 2(4): 207-218, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32259048

RESUMEN

Increased production of the osteoclastogenic cytokine RANKL is a common feature of pathologic bone loss, but the underlying cause of this increase is poorly understood. The unfolded protein response (UPR) is activated in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER). Failure to resolve misfolding results in excess UPR signaling that stimulates cytokine production and cell death. We therefore investigated whether RANKL is one of the cytokines stimulated in response to elevated UPR in bone cells. Pharmacologic induction of UPR with tunicamycin (Tm)-stimulated RANKL expression in cultures of primary osteoblastic cells and in osteoblast and osteocyte cell lines. Pharmacologic inhibition of the UPR blunted Tm-induced RANKL production. Silencing Edem1 or Sel1l, proteins that aid in degradation of misfolded proteins, also induced UPR and increased RANKL mRNA. Moreover, Tm or hypoxia increased RANKL and bone resorption in cultures of neonatal murine calvaria. Administration of Tm to adult mice caused dilation of ER in osteoblasts and osteocytes, elevated the UPR, and increased RANKL expression and osteoclast number. These findings support the hypothesis that excessive UPR signaling stimulates the expression of RANKL by osteoblasts and osteocytes, and thereby facilitates excessive bone resorption and bone loss in pathologic conditions.

10.
Aging Cell ; 19(11): e13247, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33048436

RESUMEN

Marrow adipocytes and osteoblasts differentiate from common mesenchymal progenitors in a mutually exclusive manner, and diversion of these progenitors toward adipocytes in old age has been proposed to account for the decline in osteoblasts and the development of involutional osteoporosis. This idea has been supported by evidence that thiazolidinedione (TZD)-induced activation of PPARγ, the transcription factor required for adipocyte differentiation, increases marrow fat and causes bone loss. We functionally tested this hypothesis using C57BL/6J mice with conditional deletion of PPARγ from early mesenchymal progenitors targeted by the Prx1-Cre transgene. Using a longitudinal littermate-controlled study design, we observed that PPARγ is indispensable for TZD-induced increase in marrow adipocytes in 6-month-old male mice, and age-associated increase in marrow adipocytes in 22-month-old female mice. In contrast, PPARγ is dispensable for the loss of cortical and trabecular bone caused by TZD or old age. Instead, PPARγ restrains age-dependent development of cortical porosity. These findings do not support the long-standing hypothesis that increased marrow adipocyte differentiation contributes to bone loss in old age but reveal a novel role of mesenchymal cell PPARγ in the maintenance of cortical integrity.


Asunto(s)
Adipogénesis/fisiología , Osteoporosis/fisiopatología , Factores de Edad , Animales , Diferenciación Celular , Femenino , Ratones
11.
JCI Insight ; 5(19)2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32870816

RESUMEN

In aging mice, osteoclast number increases in cortical bone but declines in trabecular bone, suggesting that different mechanisms underlie age-associated bone loss in these 2 compartments. Osteocytes produce the osteoclastogenic cytokine RANKL, encoded by Tnfsf11. Tnfsf11 mRNA increases in cortical bone of aged mice, suggesting a mechanism underlying the bone loss. To address this possibility, we aged mice lacking RANKL in osteocytes. Whereas control mice lost cortical bone between 8 and 24 months of age, mice lacking RANKL in osteocytes gained cortical bone during this period. Mice of both genotypes lost trabecular bone with age. Osteoclasts increased with age in cortical bone of control mice but not in RANKL conditional knockout mice. Induction of cellular senescence increased RANKL production in murine and human cell culture models, suggesting an explanation for elevated RANKL levels with age. Overexpression of the senescence-associated transcription factor Gata4 stimulated Tnfsf11 expression in cultured murine osteoblastic cells. Finally, elimination of senescent cells from aged mice using senolytic compounds reduced Tnfsf11 mRNA in cortical bone. Our results demonstrate the requirement of osteocyte-derived RANKL for age-associated cortical bone loss and suggest that increased Tnfsf11 expression with age results from accumulation of senescent cells in cortical bone.


Asunto(s)
Envejecimiento/patología , Resorción Ósea/patología , Senescencia Celular , Hueso Cortical/patología , Osteocitos/patología , Ligando RANK/fisiología , Envejecimiento/metabolismo , Animales , Resorción Ósea/etiología , Resorción Ósea/metabolismo , Hueso Cortical/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocitos/metabolismo
12.
Sci Rep ; 10(1): 11933, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32686739

RESUMEN

Loss of estrogens at menopause is a major cause of osteoporosis and increased fracture risk. Estrogens protect against bone loss by decreasing osteoclast number through direct actions on cells of the myeloid lineage. Here, we investigated the molecular mechanism of this effect. We report that 17ß-estradiol (E2) decreased osteoclast number by promoting the apoptosis of early osteoclast progenitors, but not mature osteoclasts. This effect was abrogated in cells lacking Bak/Bax-two pro-apoptotic members of the Bcl-2 family of proteins required for mitochondrial apoptotic death. FasL has been previously implicated in the pro-apoptotic actions of E2. However, we show herein that FasL-deficient mice lose bone mass following ovariectomy indistinguishably from FasL-intact controls, indicating that FasL is not a major contributor to the anti-osteoclastogenic actions of estrogens. Instead, using microarray analysis we have elucidated that ERα-mediated estrogen signaling in osteoclast progenitors decreases "oxidative phosphorylation" and the expression of mitochondria complex I genes. Additionally, E2 decreased the activity of complex I and oxygen consumption rate. Similar to E2, the complex I inhibitor Rotenone decreased osteoclastogenesis by promoting osteoclast progenitor apoptosis via Bak/Bax. These findings demonstrate that estrogens decrease osteoclast number by attenuating respiration, and thereby, promoting mitochondrial apoptotic death of early osteoclast progenitors.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Estrógenos/metabolismo , Mitocondrias/metabolismo , Células Precursoras de Monocitos y Macrófagos/metabolismo , Osteoclastos/metabolismo , Fosforilación Oxidativa , Animales , Apoptosis/efectos de los fármacos , Biomarcadores , Densidad Ósea , Huesos/diagnóstico por imagen , Huesos/metabolismo , Huesos/patología , Recuento de Células , Diferenciación Celular , Células Cultivadas , Estrógenos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Células Precursoras de Monocitos y Macrófagos/citología , Células Precursoras de Monocitos y Macrófagos/efectos de los fármacos , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Transducción de Señal
13.
Nat Commun ; 9(1): 2193, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875355

RESUMEN

Atherosclerosis and osteoporosis are epidemiologically linked and oxidation specific epitopes (OSEs), such as phosphocholine (PC) of oxidized phospholipids (PC-OxPL) and malondialdehyde (MDA), are pathogenic in both. The proatherogenic effects of OSEs are opposed by innate immune antibodies. Here we show that high-fat diet (HFD)-induced bone loss is attenuated in mice expressing a single chain variable region fragment of the IgM E06 (E06-scFv) that neutralizes PC-OxPL, by increasing osteoblast number and stimulating bone formation. Similarly, HFD-induced bone loss is attenuated in mice expressing IK17-scFv, which neutralizes MDA. Notably, E06-scFv also increases bone mass in mice fed a normal diet. Moreover, the levels of anti-PC IgM decrease in aged mice. We conclude that OSEs, whether produced chronically or increased by HFD, restrain bone formation, and that diminished defense against OSEs may contribute to age-related bone loss. Anti-OSEs, therefore, may represent a novel therapeutic approach against osteoporosis and atherosclerosis simultaneously.


Asunto(s)
Epítopos/inmunología , Inmunoglobulina M/inmunología , Osteogénesis/inmunología , Osteoporosis/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Epítopos/genética , Epítopos/metabolismo , Inmunoglobulina M/genética , Lipoproteínas LDL/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/inmunología , Osteogénesis/genética , Osteoporosis/etiología , Osteoporosis/genética , Oxidación-Reducción , Anticuerpos de Cadena Única/genética
14.
J Bone Miner Res ; 22(10): 1492-501, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17542686

RESUMEN

Since the initial demonstration of the phenomenon in murine and human bone sections approximately 10 yr ago, appreciation of the biologic significance of osteoblast apoptosis has contributed greatly not only to understanding the regulation of osteoblast number during physiologic bone remodeling, but also the pathogenesis of metabolic bone diseases and the pharmacology of some of the drugs used for their treatment. It is now appreciated that all major regulators of bone metabolism including bone morphogenetic proteins (BMPs), Wnts, other growth factors and cytokines, integrins, estrogens, androgens, glucocorticoids, PTH and PTH-related protein (PTHrP), immobilization, and the oxidative stress associated with aging contribute to the regulation of osteoblast and osteocyte life span by modulating apoptosis. Moreover, osteocyte apoptosis has emerged as an important regulator of remodeling on the bone surface and a critical determinant of bone strength, independently of bone mass. The detection of apoptotic osteoblasts in bone sections remains challenging because apoptosis represents only a tiny fraction of the life span of osteoblasts, not unlike a 6-mo-long terminal illness in the life of a 75-yr-old human. Importantly, the phenomenon is 50 times less common in human bone biopsies because human osteoblasts live longer and are fewer in number. Be that as it may, well-controlled assays of apoptosis can yield accurate and reproducible estimates of the prevalence of the event, particularly in rodents where there is an abundance of osteoblasts for inspection. In this perspective, we focus on the biological significance of the phenomenon for understanding basic bone biology and the pathogenesis and treatment of metabolic bone diseases and discuss limitations of existing techniques for quantifying osteoblast apoptosis in human biopsies and their methodologic pitfalls.


Asunto(s)
Apoptosis , Osteoblastos/citología , Osteocitos/citología , Envejecimiento/fisiología , Animales , Hormonas/metabolismo , Humanos , Osteoblastos/metabolismo , Osteocitos/metabolismo , Estrés Oxidativo
15.
J Bone Miner Res ; 22(12): 1943-56, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17680726

RESUMEN

UNLABELLED: We cultured MSCs on an ECM made by bone marrow cells to attempt to reconstitute the MSC niche. This ECM promoted replication of mesenchymal progenitors and retention of their multipotentiality. We conclude that the marrow ECM facilitates expansion of mesenchymal progenitors and hypothesize that it plays an important role in the maintenance of MSC stemness. INTRODUCTION: Mesenchymal colony-forming cells of the bone marrow comprise mesenchymal stem cells (MSCs) and their transit amplifying progeny, which we term mesenchymal colony-forming units (MCFUs). These progenitors undergo self-renewal and can differentiate into many different cell types including osteoblasts. However, they lose their unique properties when cultured on tissue culture plastic. This indicates that a critical feature of the marrow microenvironment that facilitates retention of stem cell properties is missing in such culture systems. In other tissues, the extracellular matrix (ECM) forms part of the specialized niche that controls stem cell behavior. Therefore, we examined whether a marrow cell-derived ECM promotes retention of the stem cell characteristics of MCFUs in vitro. MATERIALS AND METHODS: A cell-free ECM was prepared from cultured murine marrow adherent cells. The replication and multipotentiality of murine MCFUs maintained on this marrow cell-derived ECM were examined in vitro and in vivo and compared with the behavior of MCFUs maintained on plastic. RESULTS: The marrow cell-derived ECM was made up of collagen types I, III, and V, syndecan-1, perlecan, fibronectin, laminin, biglycan, and decorin, similar to the composition of the marrow ECM. This ECM preparation promoted MCFU replication, restrained their "spontaneous" differentiation toward the osteoblast lineage, and preserved their ability to differentiate into osteoblasts or adipocytes. Moreover, transplantation of MCFUs expanded on the marrow cell-derived ECM into immunocompromised mice generated five times more bone and eight times more hematopoietic marrow compared with MCFUs expanded on plastic. CONCLUSIONS: The marrow ECM facilitates expansion of MCFUs in vitro while preserving their stem cell properties. We hypothesize that the ECM made by bone marrow cells plays an important role in the maintenance of MSC function.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Matriz Extracelular , Células Madre Mesenquimatosas/citología , Células Madre Multipotentes/fisiología , Osteoblastos/citología , Animales , Células de la Médula Ósea/citología , Células Cultivadas , Proteínas de la Matriz Extracelular/biosíntesis , Femenino , Células Madre Mesenquimatosas/fisiología , Células Madre Multipotentes/citología , Osteoblastos/fisiología
16.
J Clin Invest ; 109(8): 1041-8, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11956241

RESUMEN

Glucocorticoids depress bone formation by inhibiting osteoblastogenesis and increasing osteoblast apoptosis. However, the role of bone resorption in the initial rapid phase of bone loss characteristic of glucocorticoid-induced osteoporosis is unexplained, and the reason for the efficacy of bisphosphonates in this condition remains unknown. We report that in murine osteoclast cultures, glucocorticoids prolonged the baseline survival of osteoclasts and antagonized bisphosphonate-induced caspase activation and apoptosis by a glucocorticoid receptor-mediated action. Consistent with the in vitro evidence, in a murine model of glucocorticoid-induced osteoporosis, the number of cancellous osteoclasts increased, even though osteoclast progenitor number was reduced. Moreover, in mice receiving both glucocorticoids and bisphosphonates, the expected proapoptotic effect of bisphosphonates on osteoclasts was abrogated, as evidenced by maintenance of osteoclast numbers and, additionally, loss of bone density. In contrast, bisphosphonate administration prevented glucocorticoid-induced osteoblast apoptosis. These results indicate that the early loss of bone with glucocorticoid excess is caused by extension of the life span of pre-existing osteoclasts, an effect not preventable by bisphosphonates. Therefore, the early beneficial effects of these agents must be due, in part, to prolonging the life span of osteoblasts.


Asunto(s)
Alendronato/farmacología , Glucocorticoides/farmacología , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Densidad Ósea/efectos de los fármacos , Resorción Ósea/inducido químicamente , Resorción Ósea/patología , Supervivencia Celular/efectos de los fármacos , Dexametasona/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoporosis/inducido químicamente , Osteoporosis/patología , Prednisolona/farmacología
17.
Bone ; 40(6): 1434-46, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17517365

RESUMEN

Intermittent administration of parathyroid hormone (PTH) stimulates bone formation by increasing osteoblast number, but the molecular and cellular mechanisms underlying this effect are not completely understood. In vitro and in vivo studies have shown that PTH directly activates survival signaling in osteoblasts; and that delay of osteoblast apoptosis is a major contributor to the increased osteoblast number, at least in mice. This effect requires Runx2-dependent expression of anti-apoptotic genes like Bcl-2. PTH also causes exit of replicating progenitors from the cell cycle by decreasing expression of cyclin D and increasing expression of several cyclin-dependent kinase inhibitors. Exit from the cell cycle may set the stage for pro-differentiating and pro-survival effects of locally produced growth factors and cytokines, the level and/or activity of which are known to be influenced by PTH. Observations from genetically modified mice suggest that the anabolic effect of intermittent PTH requires insulin-like growth factor-I (IGF-I), fibroblast growth factor-2 (FGF-2), and perhaps Wnts. Attenuation of the negative effects of PPAR gamma may also lead to increased osteoblast number. Daily injections of PTH may add to the pro-differentiating and pro-survival effects of locally produced PTH related protein (PTHrP). As a result, osteoblast number increases beyond that needed to replace the bone removed by osteoclasts during bone remodeling. The pleiotropic effects of intermittent PTH, each of which alone may increase osteoblast number, may explain why this therapy reverses bone loss in most osteoporotic individuals regardless of the underlying pathophysiology.


Asunto(s)
Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Hormona Paratiroidea/farmacología , Animales , Humanos , Ratones , Modelos Biológicos , Osteoblastos/citología , Osteoblastos/metabolismo , Hormona Paratiroidea/fisiología
18.
Bone ; 40(3): 758-66, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17185055

RESUMEN

Two mouse strains, AKR/J and SAMP6, were assessed longitudinally for bone mineral density of the spine. They displayed very different time courses of bone accrual, with the SAMP6 strain reaching a plateau for vertebral BMD at 3 months, whereas AKR/J mice continued to increase spine BMD for at least 8 months. Among 253 F(2) progeny of an AKR/JxSAMP6 cross, at 4 months of age, the BMD variance was 5-6% of the mean, vs. 15% for weight. Variance increased with age for every parameter measured, and was generally higher among males. The ratio of 6-month/4-month spine BMDs, termed DeltasBMD, had a normal distribution with 5.7% variance, and was largely independent of spine BMD (R=-0.23) or body weight (R=-0.12) at maturity. Heritability of the DeltasBMD trait was calculated at 0.59. Genetic mapping identified two significant loci, both distinct from those observed for BMD at maturity--implying that different genes regulate skeletal growth vs. remodeling. A locus on the X chromosome, replicated in two mouse F(2) populations (P<10(-4) for combined discovery and confirmation), affects age-dependent BMD change for both spine and the full skeleton. Its position agrees with a very narrow region identified by association mapping for effects on lumbar bone density in postmenopausal women [Parsons CA, Mroczkowski HJ, McGuigan FE, Albagha OM, Manolagas S, Reid DM, et al. Interspecies synteny mapping identifies a quantitative trait locus for bone mineral density on human chromosome Xp22. Hum Mol Genet 2005;14:3141-8]. A second locus, on chromosome 7, was observed in only one cross. Single-nucleotide polymorphisms (SNPs) are highly clustered near these loci, distinguishing the parental strains over only limited spans.


Asunto(s)
Densidad Ósea/genética , Sitios de Carácter Cuantitativo , Columna Vertebral/crecimiento & desarrollo , Cromosoma X/genética , Absorciometría de Fotón , Factores de Edad , Animales , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Factores Sexuales , Especificidad de la Especie
19.
Aging Cell ; 16(4): 693-703, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28401730

RESUMEN

Age-related bone loss in mice results from a decrease in bone formation and an increase in cortical bone resorption. The former is accounted by a decrease in the number of postmitotic osteoblasts which synthesize the bone matrix and is thought to be the consequence of age-dependent changes in mesenchymal osteoblast progenitors. However, there are no specific markers for these progenitors, and conclusions rely on results from in vitro cultures of mixed cell populations. Moreover, the culprits of such changes remain unknown. Here, we have used Osx1-Cre;TdRFP mice in which osteoprogenitors express the TdRFP fluorescent protein. We report that the number of TdRFP-Osx1 cells, freshly isolated from the bone marrow, declines by more than 50% between 6 and 24 months of age in both female and male mice. Moreover, TdRFP-Osx1 cells from old mice exhibited markers of DNA damage and senescence, such as γH2AX foci, G1 cell cycle arrest, phosphorylation of p53, increased p21CIP1 levels, as well as increased levels of GATA4 and activation of NF-κB - two major stimulators of the senescence-associated secretory phenotype (SASP). Bone marrow stromal cells from old mice also exhibited elevated expression of SASP genes, including several pro-osteoclastogenic cytokines, and increased capacity to support osteoclast formation. These changes were greatly attenuated by the senolytic drug ABT263. Together, these findings suggest that the decline in bone mass with age is the result of intrinsic defects in osteoprogenitor cells, leading to decreased osteoblast numbers and increased support of osteoclast formation.


Asunto(s)
Envejecimiento/genética , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , Osteoporosis/genética , Factor de Transcripción Sp7/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Compuestos de Anilina/farmacología , Animales , Huesos/metabolismo , Huesos/patología , Diferenciación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Histonas/genética , Histonas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Ratones , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Osteoporosis/metabolismo , Osteoporosis/patología , Cultivo Primario de Células , Transducción de Señal , Factor de Transcripción Sp7/metabolismo , Sulfonamidas/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína Fluorescente Roja
20.
JCI Insight ; 2(17)2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28878136

RESUMEN

Decreased cortical thickness and increased cortical porosity are the key anatomic changes responsible for osteoporotic fractures in elderly women and men. The cellular basis of these changes is unbalanced endosteal and intracortical osteonal remodeling by the osteoclasts and osteoblasts that comprise the basic multicellular units (BMUs). Like humans, mice lose cortical bone with age, but unlike humans, this loss occurs in the face of sex steroid sufficiency. Mice are therefore an ideal model to dissect age-specific osteoporotic mechanisms. Nevertheless, lack of evidence for endosteal or intracortical remodeling in mice has raised questions about their translational relevance. We show herein that administration of the antiosteoclastogenic cytokine osteoprotegerin to Swiss Webster mice ablated not only osteoclasts, but also endosteal bone formation, demonstrating the occurrence of BMU-based endosteal remodeling. Femoral cortical thickness decreased in aged male and female C57BL/6J mice, as well as F1 hybrids of C57BL/6J and BALB/cBy mice. This decrease was greater in C57BL/6J mice, indicating a genetic influence. Moreover, endosteal remodeling became unbalanced because of increased osteoclast and decreased osteoblast numbers. The porosity of the femoral cortex increased with age but was much higher in females of both strains. Notably, the increased cortical porosity resulted from de novo intracortical remodeling by osteon-like structures. Age-dependent cortical bone loss was associated with increased osteocyte DNA damage, cellular senescence, the senescence-associated secretory phenotype, and increased levels of RANKL. The demonstration of unbalanced endosteal and intracortical remodeling in old mice validates the relevance of this animal model to involutional osteoporosis in humans.


Asunto(s)
Envejecimiento/patología , Remodelación Ósea , Porosidad , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Modelos Animales , Osteoblastos/citología , Osteoclastos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA