Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(1): 53-65.e7, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31103421

RESUMEN

The M2 muscarinic acetylcholine receptor (M2R) is a prototypical GPCR that plays important roles in regulating heart rate and CNS functions. Crystal structures provide snapshots of the M2R in inactive and active states, but the allosteric link between the ligand binding pocket and cytoplasmic surface remains poorly understood. Here we used solution NMR to examine the structure and dynamics of the M2R labeled with 13CH3-ε-methionine upon binding to various orthosteric and allosteric ligands having a range of efficacy for both G protein activation and arrestin recruitment. We observed ligand-specific changes in the NMR spectra of 13CH3-ε-methionine probes in the M2R extracellular domain, transmembrane core, and cytoplasmic surface, allowing us to correlate ligand structure with changes in receptor structure and dynamics. We show that the M2R has a complex energy landscape in which ligands with different efficacy profiles stabilize distinct receptor conformations.


Asunto(s)
Acetilcolina/química , Carbacol/química , Isoxazoles/química , Pilocarpina/química , Piridinas/química , Compuestos de Amonio Cuaternario/química , Receptor Muscarínico M2/química , Tiadiazoles/química , Acetilcolina/metabolismo , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Carbacol/metabolismo , Clonación Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Isoxazoles/metabolismo , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Pilocarpina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Piridinas/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Termodinámica , Tiadiazoles/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(37): 23096-23105, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32868434

RESUMEN

The ß2-adrenergic receptor (ß2AR) is a prototypical G protein-coupled receptor (GPCR) that preferentially couples to the stimulatory G protein Gs and stimulates cAMP formation. Functional studies have shown that the ß2AR also couples to inhibitory G protein Gi, activation of which inhibits cAMP formation [R. P. Xiao, Sci. STKE 2001, re15 (2001)]. A crystal structure of the ß2AR-Gs complex revealed the interaction interface of ß2AR-Gs and structural changes upon complex formation [S. G. Rasmussen et al., Nature 477, 549-555 (2011)], yet, the dynamic process of the ß2AR signaling through Gs and its preferential coupling to Gs over Gi is still not fully understood. Here, we utilize solution nuclear magnetic resonance (NMR) spectroscopy and supporting molecular dynamics (MD) simulations to monitor the conformational changes in the G protein coupling interface of the ß2AR in response to the full agonist BI-167107 and Gs and Gi1 These results show that BI-167107 stabilizes conformational changes in four transmembrane segments (TM4, TM5, TM6, and TM7) prior to coupling to a G protein, and that the agonist-bound receptor conformation is different from the G protein coupled state. While most of the conformational changes observed in the ß2AR are qualitatively the same for Gs and Gi1, we detected distinct differences between the ß2AR-Gs and the ß2AR-Gi1 complex in intracellular loop 2 (ICL2). Interactions with ICL2 are essential for activation of Gs These differences between the ß2AR-Gs and ß2AR-Gi1 complexes in ICL2 may be key determinants for G protein coupling selectivity.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Benzoxazinas/farmacología , Sitios de Unión/fisiología , Proteínas de Unión al GTP/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
3.
Biochemistry ; 59(35): 3235-3246, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32786408

RESUMEN

The periplasmic protein SurA is the primary chaperone involved in the biogenesis of bacterial outer membrane proteins and is a potential antibacterial drug target. The three-dimensional structure of SurA can be divided into three parts, a core module formed by the N- and C-terminal regions and two peptidyl-prolyl isomerase (PPIase) domains, P1 and P2. Despite the determination of the structures of several SurA-peptide complexes, the functional mechanism of this chaperone remains elusive and the roles of the two PPIase domains are yet unclear. Herein, we characterize the conformational dynamics of SurA by using solution nuclear magnetic resonance and single-molecule fluorescence resonance energy transfer methods. We demonstrate a "closed-to-open" structural transition of the P1 domain that is correlated with both chaperone activity and peptide binding and show that the flexible P2 domain can also occupy conformations that closely contact the NC core module. Our results offer a structural basis for the counteracting roles of the two PPIase domains in regulating the SurA chaperone activity.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Isomerasa de Peptidilprolil/química , Periplasma/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación con Ganancia de Función , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Resonancia Magnética Nuclear Biomolecular , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología
4.
J Biol Chem ; 294(9): 3192-3206, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30573682

RESUMEN

The role of protein structural disorder in biological functions has gained increasing attention in the past decade. The bacterial acid-resistant chaperone HdeA belongs to a group of "conditionally disordered" proteins, because it is inactive in its well-structured state and becomes activated via an order-to-disorder transition under acid stress. However, the mechanism for unfolding-induced activation remains unclear because of a lack of experimental information on the unfolded state conformation and the chaperone-client interactions. Herein, we used advanced solution NMR methods to characterize the activated-state conformation of HdeA under acidic conditions and identify its client-binding sites. We observed that the structure of activated HdeA becomes largely disordered and exposes two hydrophobic patches essential for client interactions. Furthermore, using the pH-dependent chemical exchange saturation transfer (CEST) NMR method, we identified three acid-sensitive regions that act as structural locks in regulating the exposure of the two client-binding sites during the activation process, revealing a multistep activation mechanism of HdeA's chaperone function at the atomic level. Our results highlight the role of intrinsic protein disorder in chaperone function and the self-inhibitory role of ordered structures under nonstress conditions, offering new insights for improving our understanding of protein structure-function paradigms.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Desplegamiento Proteico , Secuencia de Aminoácidos , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Modelos Moleculares , Chaperonas Moleculares/genética , Mutagénesis Sitio-Dirigida , Conformación Proteica
5.
J Biol Chem ; 292(15): 6056-6075, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28223353

RESUMEN

A central step in the initiation of chromosomal DNA replication in eukaryotes is the assembly of pre-replicative complex (pre-RC) at late M and early G1 phase of the cell cycles. Since 1973, four proteins or protein complexes, including cell division control protein 6 (Cdc6)/Cdc18, minichromosome maintenance protein complex, origin recognition complex (ORC), and Cdt1, are known components of the pre-RC. Previously, we reported that a non-ORC protein binds to the essential element Δ9 of the Schizosaccharomyces pombe DNA-replication origin ARS3001. In this study, we identified that the non-ORC protein is Sap1. Like ORC, Sap1 binds to DNA origins during cell growth cycles. But unlike ORC, which binds to asymmetric AT-rich sequences through its nine AT-hook motifs, Sap1 preferentially binds to a DNA sequence of 5'-(A/T) n (C/G)(A/T)9-10(G/C)(A/T) n -3' (n ≥ 1). We also found that Sap1 and ORC physically interact. We further demonstrated that Sap1 is required for the assembly of the pre-RC because of its essential role in recruiting Cdc18 to DNA origins. Thus, we conclude that Sap1 is a replication-initiation factor that directly participates in the assembly of the pre-RC. DNA-replication origins in fission yeast are defined by possessing two essential elements with one bound by ORC and the other by Sap1.


Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Proteínas de Unión al ADN/metabolismo , Motivos de Nucleótidos/fisiología , Origen de Réplica/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
6.
Biochem Biophys Res Commun ; 504(1): 225-230, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30177392

RESUMEN

The 26S proteasome is the major protein degradation machinery in living cells. The Rpn5 protein is one scaffolding subunit in the lid subcomplex of the 19S regulatory particle in the proteasome holoenzyme. Herein we report the solution structure of the N-terminal domain (NTD) of yeast Rpn5 at high resolution by NMR spectroscopy. The results show that Rpn5 NTD adopts α-solenoid-like fold in right-handed superhelical configuration formed by a number of α-helices. Structural comparisons with currently available cryo-EM structures reveal local structural differences in the first three helices between yeast and human Rpn5. The results further highlight the conformational flexibility in three possible protein interaction sites. Moreover, the structures of the NTD show large variations among different PCI-containing Rpn subunits. Our current results provide atomic-level structural basis for further investigations of protein-protein interactions and the proteasome assembly pathway.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Animales , Sitios de Unión , Microscopía por Crioelectrón , Humanos , Espectroscopía de Resonancia Magnética , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína
7.
Biochemistry ; 56(43): 5748-5757, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29016106

RESUMEN

The bacterial acid-resistant chaperone HdeA is a "conditionally disordered" protein that functions at low pH when it undergoes a transition from a well-folded dimer to an unfolded monomer. The dimer dissociation and unfolding processes result in exposure of hydrophobic surfaces that allows binding to a broad range of client proteins. To fully elucidate the chaperone mechanism of HdeA, it is crucial to understand how the activated HdeA interacts with its native substrates during acid stress. Herein, we present a nuclear magnetic resonance study of the pH-dependent HdeA-substrate interactions. Our results show that the activation of HdeA is not only induced by acidification but also regulated by the presence of unfolded substrates. The variable extent of unfolding of substrates differentially regulates the HdeA-substrate interaction, and the binding further affects the HdeA conformation. Finally, we show that HdeA binds its substrates heterogeneously, and the "amphiphilic" model for HdeA-substrate interaction is discussed.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Periplasmáticas/metabolismo , Pliegue de Proteína , Estrés Fisiológico , Escherichia coli/química , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Resonancia Magnética Nuclear Biomolecular , Proteínas Periplasmáticas/química
8.
J Biol Chem ; 290(11): 6878-89, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25631053

RESUMEN

The regulatory particle (RP) of the 26 S proteasome functions in preparing polyubiquitinated substrates for degradation. The lid complex of the RP contains an Rpn8-Rpn11 heterodimer surrounded by a horseshoe-shaped scaffold formed by six proteasome-COP9/CSN-initiation factor (PCI)-containing subunits. The PCI domains are essential for lid assembly, whereas the detailed molecular mechanisms remain elusive. Recent cryo-EM studies at near-atomic resolution provided invaluable information on the RP architecture in different functional states. Nevertheless, atomic resolution structural information on the RP is still limited, and deeper understanding of RP assembly mechanism requires further studies on the structures and interactions of individual subunits or subcomplexes. Herein we report the high-resolution NMR structures of the PCI-containing subunit Rpn9 from Saccharomyces cerevisiae. The 45-kDa protein contains an all-helical N-terminal domain and a C-terminal PCI domain linked via a semiflexible hinge. The N-terminal domain mediates interaction with the ubiquitin receptor Rpn10, whereas the PCI domain mediates interaction with the neighboring PCI subunit Rpn5. The Rpn9-Rpn5 interface highlights two structural motifs on the winged helix module forming a hydrophobic center surrounded by ionic pairs, which is a common pattern for all PCI-PCI interactions in the lid. The results suggest that divergence in surface composition among different PCI pairs may contribute to the modulation of lid assembly.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Mapas de Interacción de Proteínas , Alineación de Secuencia
9.
J Biol Chem ; 290(36): 22262-73, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26224634

RESUMEN

Evolution of enzymes plays a crucial role in obtaining new biological functions for all life forms. Arsenate reductases (ArsC) are several families of arsenic detoxification enzymes that reduce arsenate to arsenite, which can subsequently be extruded from cells by specific transporters. Among these, the Synechocystis ArsC (SynArsC) is structurally homologous to the well characterized thioredoxin (Trx)-coupled ArsC family but requires the glutaredoxin (Grx) system for its reactivation, therefore classified as a unique Trx/Grx-hybrid family. The detailed catalytic mechanism of SynArsC is unclear and how the "hybrid" mechanism evolved remains enigmatic. Herein, we report the molecular mechanism of SynArsC by biochemical and structural studies. Our work demonstrates that arsenate reduction is carried out via an intramolecular thiol-disulfide cascade similar to the Trx-coupled family, whereas the enzyme reactivation step is diverted to the coupling of the glutathione-Grx pathway due to the local structural difference. The current results support the hypothesis that SynArsC is likely a molecular fossil representing an intermediate stage during the evolution of the Trx-coupled ArsC family from the low molecular weight protein phosphotyrosine phosphatase (LMW-PTPase) family.


Asunto(s)
Arseniato Reductasas/metabolismo , Arseniatos/metabolismo , Proteínas Bacterianas/metabolismo , Synechocystis/enzimología , Secuencia de Aminoácidos , Arseniato Reductasas/química , Arseniato Reductasas/genética , Arseniatos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Disulfuros/metabolismo , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Compuestos de Sulfhidrilo/metabolismo , Synechocystis/genética , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
10.
Biochim Biophys Acta ; 1838(7): 1881-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24699374

RESUMEN

The twin-arginine protein transport (Tat) system translocates fully folded proteins across lipid membranes. In Escherichia coli, the Tat system comprises three essential components: TatA, TatB and TatC. The protein translocation process is proposed to initiate by signal peptide recognition and substrate binding to the TatBC complex. Upon formation of the TatBC-substrate protein complex, the TatA subunits are recruited and form the protein translocation pore. Experimental evidences suggest that TatB forms a tight complex with TatC at 1:1 molar ratio and the TatBC complex contains multiple copies of both proteins. Cross-linking experiments demonstrate that TatB functions in tetrameric units and interacts with both TatC and substrate proteins. However, structural information of the TatB protein is still lacking, and its functional mechanism remains elusive. Herein, we report the solution structure of TatB in DPC micelles determined by Nuclear Magnetic Resonance (NMR) spectroscopy. Overall, the structure shows an extended 'L-shape' conformation comprising four helices: a transmembrane helix (TMH) α1, an amphipathic helix (APH) α2, and two solvent exposed helices α3 and α4. The packing of TMH and APH is relatively rigid, whereas helices α3 and α4 display notably higher mobility. The observed floppiness of helices α3 and α4 allows TatB to sample a large conformational space, thus providing high structural plasticity to interact with substrate proteins of different sizes and shapes.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Secuencia de Aminoácidos , Arginina , Membrana Celular/química , Escherichia coli/química , Escherichia coli/metabolismo , Micelas , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Señales de Clasificación de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Alineación de Secuencia , Soluciones
11.
Proc Natl Acad Sci U S A ; 109(37): 14900-5, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22927388

RESUMEN

The C-terminal domain (M(pro)-C) of SARS-CoV main protease adopts two different fold topologies, a monomer and a 3D domain-swapped dimer. Here, we report that M(pro)-C can reversibly interconvert between these two topological states under physiological conditions. Although the swapped α(1)-helix is fully buried inside the protein hydrophobic core, the interconversion of M(pro)-C is carried out without the hydrophobic core being exposed to solvent. The 3D domain swapping of M(pro)-C is activated by an order-to-disorder transition of its C-terminal α(5)-helix foldon. Unfolding of this foldon promotes self-association of M(pro)-C monomers and functions to mediate the 3D domain swapping, without which M(pro)-C can no longer form the domain-swapped dimer. Taken together, we propose that there exists a special dimeric intermediate enabling the protein core to unpack and the α(1)-helices to swap in a hydrophobic environment, which minimizes the energy cost of the 3D domain-swapping process.


Asunto(s)
Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Conformación Proteica , Pliegue de Proteína , Proteínas Virales/química , Proteínas Virales/genética , Dicroismo Circular , Proteasas 3C de Coronavirus , Dimerización , Cinética , Espectroscopía de Resonancia Magnética , Mutagénesis , Mutación/genética , Marcadores de Spin , Termodinámica
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 7): 1812-22, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25004959

RESUMEN

Fas apoptosis inhibitory molecule (FAIM) is a highly conserved anti-apoptotic protein which plays important roles in cells. There are two isoforms of FAIM, of which the short isoform FAIM-S is broadly expressed in all tissues, whereas the long isoform FAIM-L is exclusively expressed in the nervous system. No structure of human FAIM has been reported to date and the detailed molecular mechanisms underlying the anti-apoptotic function of FAIM remain unknown. Here, the crystal structure of the human FAIM-S N-terminal domain (NTD) and the NMR solution structure of the human FAIM-S C-terminal domain (CTD) were determined. The structures revealed that the NTD and CTD adopt a similar protein fold containing eight antiparallel ß-strands which form two sheets. Both structural and biochemical analyses implied that the NTD exists as a dimer and the CTD as a monomer and that they can interact with each other. Several critical residues were identified to be involved in this interaction. Moreover, mutations of these critical residues also interfered in the anti-apoptotic activity of FAIM-S. Thus, the structural and functional data presented here will provide insight into the anti-apoptotic mechanism of FAIM-S.


Asunto(s)
Apoptosis , Receptor fas/química , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Células HEK293 , Humanos , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Homología de Secuencia de Aminoácido
13.
Commun Biol ; 7(1): 561, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734744

RESUMEN

The WRKY transcription factors play essential roles in a variety of plant signaling pathways associated with biotic and abiotic stress response. The transcriptional activity of many WRKY members are regulated by a class of intrinsically disordered VQ proteins. While it is known that VQ proteins interact with the WRKY DNA-binding domains (DBDs), also termed as the WRKY domains, structural information regarding VQ-WRKY interaction is lacking and the regulation mechanism remains unknown. Herein we report a solution NMR study of the interaction between Arabidopsis WRKY33 and its regulatory VQ protein partner SIB1. We uncover a SIB1 minimal sequence neccessary for forming a stable complex with WRKY33 DBD, which comprises not only the consensus "FxxhVQxhTG" VQ motif but also its preceding region. We demonstrate that the ßN-strand and the extended ßN-ß1 loop of WRKY33 DBD form the SIB1 docking site, and build a structural model of the complex based on the NMR paramagnetic relaxation enhancement and mutagenesis data. Based on this model, we further identify a cluster of positively-charged residues in the N-terminal region of SIB1 to be essential for the formation of a SIB1-WRKY33-DNA ternary complex. These results provide a framework for the mechanism of SIB1-enhanced WRKY33 transcriptional activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factor sigma/genética , Factor sigma/metabolismo
14.
Nat Commun ; 14(1): 7865, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030602

RESUMEN

ß-Arrestins (ßarrs) are functionally versatile proteins that play critical roles in the G-protein-coupled receptor (GPCR) signaling pathways. While it is well established that the phosphorylated receptor tail plays a central role in ßarr activation, emerging evidence highlights the contribution from membrane lipids. However, detailed molecular mechanisms of ßarr activation by different binding partners remain elusive. In this work, we present a comprehensive study of the structural changes in critical regions of ßarr1 during activation using 19F NMR spectroscopy. We show that phosphopeptides derived from different classes of GPCRs display different ßarr1 activation abilities, whereas binding of the membrane phosphoinositide PIP2 stabilizes a distinct partially activated conformational state. Our results further unveil a sparsely-populated activation intermediate as well as complex cross-talks between different binding partners, implying a highly multifaceted conformational energy landscape of ßarr1 that can be intricately modulated during signaling.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , Transducción de Señal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2/metabolismo , Fosforilación
15.
Nat Commun ; 14(1): 376, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690613

RESUMEN

The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and ß-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance ß-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.


Asunto(s)
Acetilcolina , Receptores Muscarínicos , Microscopía por Crioelectrón , Regulación Alostérica/fisiología , Receptores Muscarínicos/metabolismo , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP/metabolismo , Ligandos , beta-Arrestinas/metabolismo
16.
Nat Commun ; 14(1): 2005, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037825

RESUMEN

Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The ß2 adrenergic receptor's (ß2AR) 71 amino acid CT is a substrate for GPCR kinases and binds ß-arrestins to regulate signaling. Here we show that the ß2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking ß-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged ß2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , beta-Arrestinas/metabolismo , Línea Celular , Receptores Acoplados a Proteínas G/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
17.
J Biol Chem ; 286(14): 12381-8, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21330362

RESUMEN

Ca2+-binding proteins play pivotal roles in both eukaryotic and prokaryotic cells. CcbP from cyanobacterium Anabaena sp. strain PCC 7120 is a major Ca2+-binding protein involved in heterocyst differentiation, a process that forms specialized nitrogen-fixing cells. The three-dimensional structures of both Ca2+-free and Ca2+-bound forms of CcbP are essential for elucidating the Ca2+-signaling mechanism. However, CcbP shares low sequence identity with proteins of known structures, and its Ca2+-binding sites remain unknown. Here, we report the solution structures of CcbP in both Ca2+-free and Ca2+-bound forms determined by nuclear magnetic resonance spectroscopy. CcbP adopts an overall new fold and contains two Ca2+-binding sites with distinct Ca2+-binding abilities. Mutation of Asp38 at the stronger Ca2+-binding site of CcbP abolished its ability to regulate heterocyst formation in vivo. Surprisingly, the ß-barrel subdomain of CcbP, which does not participate in Ca2+-binding, topologically resembles the Src homology 3 (SH3) domain and might act as a protein-protein interaction module. Our results provide the structural basis of the unique Ca2+ signaling mechanism during heterocyst differentiation.


Asunto(s)
Anabaena/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Secuencia de Aminoácidos , Calcio/metabolismo , Diferenciación Celular , Regulación Bacteriana de la Expresión Génica , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Transducción de Señal
18.
J Mater Chem B ; 10(35): 6627-6633, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35506347

RESUMEN

Ubiquitination is a prevalent post-translational modification that controls a multitude of important biological processes. Due to the low abundance of ubiquitinated proteins, highly efficient separation and enrichment approaches are required for ubiquitinome analysis. In this work, we disclose the region-specific interactions between the hydrophobic patch of ubiquitin and polydopamine. Taking advantage of this inherent binding property, we have constructed surface-imprinted magnetic nanoparticles (NPs) for ubiquitin by sequential dopamine polymerization and surface PEGylation. The obtained molecularly imprinted polymer (MIP) NPs showed a binding constant of 2.6 × 106 L mol-1 for the template ubiquitin. The bound ubiquitin could be quantitatively released by heating to 70 °C at pH 2.0 or 90 °C at neutral (pH 7.0) conditions. The MIP NPs exhibited nano receptor-like property which not only effectively blocked the formation of branched ubiquitin chains but also selectively separated ubiquitin from the bacterial cell lysates. By incubating the MIP NPs with the lysates of 293T cells, totally 529 ubiquitinated proteins were captured, among which 287 proteins were not identified by the anti-ubiquitin monoclonal antibodies (mAbs). With the distinct merits of low cost and high stability, the as-prepared MIP NPs may be utilized either separately or as an important complement to the mAbs for the purification and enrichment of ubiquitin and ubiquitinated proteins from complex biological samples. Furthermore, due to the flexibility in modification of the binding sites during or after the imprinting reactions, the results of this work also paved the way for generation of artificial receptors for branched ubiquitin chains and polyubiquitinated proteins with higher avidity and specificity.


Asunto(s)
Impresión Molecular , Receptores Artificiales , Anticuerpos Monoclonales , Dopamina , Indoles , Impresión Molecular/métodos , Polímeros Impresos Molecularmente , Polímeros , Ubiquitina , Proteínas Ubiquitinadas/química
19.
Nat Commun ; 12(1): 2396, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888704

RESUMEN

Arrestins recognize different receptor phosphorylation patterns and convert this information to selective arrestin functions to expand the functional diversity of the G protein-coupled receptor (GPCR) superfamilies. However, the principles governing arrestin-phospho-receptor interactions, as well as the contribution of each single phospho-interaction to selective arrestin structural and functional states, are undefined. Here, we determined the crystal structures of arrestin2 in complex with four different phosphopeptides derived from the vasopressin receptor-2 (V2R) C-tail. A comparison of these four crystal structures with previously solved Arrestin2 structures demonstrated that a single phospho-interaction change results in measurable conformational changes at remote sites in the complex. This conformational bias introduced by specific phosphorylation patterns was further inspected by FRET and 1H NMR spectrum analysis facilitated via genetic code expansion. Moreover, an interdependent phospho-binding mechanism of phospho-receptor-arrestin interactions between different phospho-interaction sites was unexpectedly revealed. Taken together, our results provide evidence showing that phospho-interaction changes at different arrestin sites can elicit changes in affinity and structural states at remote sites, which correlate with selective arrestin functions.


Asunto(s)
Receptores de Vasopresinas/metabolismo , beta-Arrestina 1/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Mutación , Resonancia Magnética Nuclear Biomolecular , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación , Conformación Proteica en Hélice alfa , Dominios Proteicos/genética , Receptores de Vasopresinas/química , Receptores de Vasopresinas/ultraestructura , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , beta-Arrestina 1/genética , beta-Arrestina 1/aislamiento & purificación , beta-Arrestina 1/ultraestructura
20.
Biochim Biophys Acta ; 1790(2): 134-40, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19027051

RESUMEN

The fluorinated surfactant sodium perfluorooctanoate (SPFO) could bind onto ubiquitin (UBQ) and induce the unfolding of UBQ. By using (15)N-edited heteronuclear single-quantum coherence (HSQC) NMR and (19)F NMR to monitor (15)N-labeled UBQ and SPFO, respectively, the binding sites and the aggregation process of SPFO on UBQ at various SPFO concentrations were observed. A detailed process from specific binding to cooperative binding of SPFO on UBQ, and a detailed structure change of UBQ upon the increase of SPFO concentration were obtained. The refolding of UBQ in UBQ-SPFO complex was carried out by adding cationic surfactant. It was shown that added cationic surfactants formed mixed micelles with SPFO and resulted in the dissociation of the UBQ-SPFO complex, and consequently, most ubiquitin could be refolded to its native state.


Asunto(s)
Caprilatos/farmacología , Fluorocarburos/farmacología , Resonancia Magnética Nuclear Biomolecular , Ubiquitina/química , Ubiquitina/metabolismo , Sitios de Unión , Precipitación Química , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Pliegue de Proteína/efectos de los fármacos , Tensoactivos/farmacología , Ubiquitina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA