Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(13): 6313-6318, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30862735

RESUMEN

Hepatic ammonia handling was analyzed in taurine transporter (TauT) KO mice. Surprisingly, hyperammonemia was present at an age of 3 and 12 months despite normal tissue integrity. This was accompanied by cerebral RNA oxidation. As shown in liver perfusion experiments, glutamine production from ammonia was diminished in TauT KO mice, whereas urea production was not affected. In livers from 3-month-old TauT KO mice protein expression and activity of glutamine synthetase (GS) were unaffected, whereas the ammonia-transporting RhBG protein was down-regulated by about 50%. Double reciprocal plot analysis of glutamine synthesis versus perivenous ammonia concentration revealed that TauT KO had no effect on the capacity of glutamine formation in 3-month-old mice, but doubled the ammonia concentration required for half-maximal glutamine synthesis. Since hepatic RhBG expression is restricted to GS-expressing hepatocytes, the findings suggest that an impaired ammonia transport into these cells impairs glutamine synthesis. In livers from 12-, but not 3-month-old TauT KO mice, RhBG expression was not affected, surrogate markers for oxidative stress were strongly up-regulated, and GS activity was decreased by 40% due to an inactivating tyrosine nitration. This was also reflected by kinetic analyses in perfused liver, which showed a decreased glutamine synthesizing capacity by 43% and a largely unaffected ammonia concentration dependence. It is concluded that TauT deficiency triggers hyperammonemia through impaired hepatic glutamine synthesis due to an impaired ammonia transport via RhBG at 3 months and a tyrosine nitration-dependent inactivation of GS in 12-month-old TauT KO mice.


Asunto(s)
Amoníaco/metabolismo , Enfermedades Carenciales , Inactivación Metabólica , Hígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Enfermedades Carenciales/patología , Modelos Animales de Enfermedad , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Técnicas de Silenciamiento del Gen , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Glicoproteínas/metabolismo , Hepatocitos/metabolismo , Hiperamonemia/metabolismo , Cinética , Hígado/patología , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , Estrés Oxidativo , Perfusión , Urea/metabolismo
2.
Biol Chem ; 402(9): 1073-1085, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34333885

RESUMEN

The structural-functional organization of ammonia and glutamine metabolism in the liver acinus involves highly specialized hepatocyte subpopulations like glutamine synthetase (GS) expressing perivenous hepatocytes (scavenger cells). However, this cell population has not yet been characterized extensively regarding expression of other genes and potential subpopulations. This was investigated in the present study by proteome profiling of periportal GS-negative and perivenous GS-expressing hepatocytes from mouse and rat. Apart from established markers of GS+ hepatocytes such as glutamate/aspartate transporter II (GLT1) or ammonium transporter Rh type B (RhBG), we identified novel scavenger cell-specific proteins like basal transcription factor 3 (BTF3) and heat-shock protein 25 (HSP25). Interestingly, BTF3 and HSP25 were heterogeneously distributed among GS+ hepatocytes in mouse liver slices. Feeding experiments showed that RhBG expression was increased in livers from mice fed with high protein diet compared to standard chow. While spatial distributions of GS and carbamoylphosphate synthetase 1 (CPS1) were unaffected, periportal areas constituted by glutaminase 2 (GLS2)-positive hepatocytes were enlarged or reduced in response to high or low protein diet, respectively. The data suggest that the population of perivenous GS+ scavenger cells is heterogeneous and not uniform as previously suggested which may reflect a functional heterogeneity, possibly relevant for liver regeneration.


Asunto(s)
Hígado , Animales , Glutamato-Amoníaco Ligasa , Regeneración Hepática , Masculino , Ratones , Ratas
3.
Am J Physiol Gastrointest Liver Physiol ; 318(4): G736-G747, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32090603

RESUMEN

Aging is a risk factor in the development of many diseases, including liver-related diseases. The two aims of the present study were 1) to determine how aging affects liver health in mice in the absence of any interventions and 2) if degenerations observed in relation to blood endotoxin levels are critical in aging-associated liver degeneration. Endotoxin levels and markers of liver damage, mitochondrial dysfunction, insulin resistance, and apoptosis as well as the Toll-like receptor 4 (Tlr-4) signaling cascade were studied in liver tissue and blood, respectively, of 3- and 24-mo-old male C57BL/6J mice. In a second set of experiments, 3- to 4-mo-old and 14-mo-old female lipopolysaccharide-binding protein (LBP)-/- mice and littermates fed standard chow, markers of liver damage, insulin resistance, and mitochondrial dysfunction were assessed. Plasma activity of aspartate aminotransferase and histological signs of hepatic inflammation and fibrosis were significantly higher in old C57BL/6J mice than in young animals. The number of neutrophils, CD8α-positive cells, and mRNA expression of markers of apoptosis were also significantly higher in livers of old C57BL/6J mice compared with young animals, being also associated with a significant induction of hepatic Tlr-4 and LBP expression as well as higher endotoxin levels in peripheral blood. Compared with age-matched littermates, LBP-/- mice display less signs of senescence in liver. Taken together, our data suggest that, despite being fed standard chow, old mice developed liver inflammation and beginning fibrosis and that bacterial endotoxin may play a critical role herein.NEW & NOTEWORTHY Old age in mice is associated with marked signs of liver degeneration, hepatic inflammation, and fibrosis. Aging-associated liver degeneration is associated with elevated bacterial endotoxin levels and an induction of lipopolysaccharide-binding protein (LBP) and Toll-like receptor 4-dependent signaling cascades in liver tissue. Furthermore, in old aged LBP-/- mice, markers of senescence seem to be lessened, supporting the hypothesis that bacterial endotoxin levels might be critical in aging-associated decline of liver.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Envejecimiento , Proteínas Portadoras/metabolismo , Endotoxinas/sangre , Cirrosis Hepática/patología , Hígado/patología , Glicoproteínas de Membrana/metabolismo , Proteínas de Fase Aguda/genética , Animales , Apoptosis , Biomarcadores , Proteínas Portadoras/genética , Femenino , Regulación de la Expresión Génica , Glucosa/metabolismo , Inflamación/patología , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Hígado/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
4.
Eur J Nutr ; 59(2): 787-799, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30879098

RESUMEN

PURPOSE: Results of some epidemiological studies suggest that moderate alcohol consumption may be associated with a decreased risk to develop NAFLD. Here, the effect of the consumption of moderate beer and diluted ethanol, respectively, on the development of NAFLD were assessed. METHODS: Female C57BL/6J mice were fed a control diet (C-D) or a diet rich in fructose, fat and cholesterol (FFC) enriched isocalorically and isoalcoholically with beer (FFC + B) or plain ethanol (FFC + E) (2.5 g ethanol/kg body weight/day) for 7 weeks. Liver damage was assessed by histology using NAFLD activity score. Markers of inflammation, insulin resistance and adiponectin signaling were measured at mRNA and protein levels. Using J774A.1 cells as a model of Kupffer cells, the effect of alcoholic beverages on adiponectin receptor 1 (Adipor1) was assessed. RESULTS: Hepatic triglyceride concentration, neutrophil granulocytes, iNOS protein concentrations and early signs of insulin resistance found in FFC-fed mice were significantly attenuated in FFC+ B-fed mice (P < 0.05 for all). These findings were associated with a super-induction of Adipor1 mRNA expression (+ ~ 18-fold compared to all other groups) and a decrease of markers of lipid peroxidation in liver tissue of FFC + B-fed mice when compared to FFC-fed animals. Similar differences were not found between FFC- and FFC+ E-fed mice. Expression of Adipor1 was also super-induced (7.5-fold) in J774A.1 cells treated with beer (equivalent to 2 mmol/L ethanol). CONCLUSIONS: These data suggest that moderate intake of fermented alcoholic beverages such as beer at least partially attenuates NAFLD development through mechanisms associated with hepatic AdipoR1 expression.


Asunto(s)
Adiponectina/metabolismo , Cerveza , Dieta/efectos adversos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Transducción de Señal/efectos de los fármacos , Animales , Dieta/métodos , Modelos Animales de Enfermedad , Etanol/administración & dosificación , Femenino , Alimentos Fermentados , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
5.
J Nutr ; 147(11): 2041-2049, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28931589

RESUMEN

Background: Universally accepted therapeutic strategies for the treatment of nonalcoholic steatohepatitis (NASH) are still lacking. Studies suggest a preventive effect of oral Gln supplementation on the development of NASH; however, whether Gln also has therapeutic potential for pre-existing NASH has not yet been clarified.Objective: The aim of the present study was to determine whether Gln prevents the progression of diet-induced NASH in mice.Methods: For 8 wk, female C57BL/6J mice (6-8 wk old) were pair-fed a liquid Western-style diet [WSD, 25% of energy from fat, 50% wt:wt fructose, 0.16% wt:wt cholesterol] or control diet (C diet) to induce liver damage. From week 8 to 13, they were pair-fed the C diet or WSD alone or supplemented with l-Gln to provide 2.1 g/kg body weight (C diet + Gln or WSD + Gln). Energy intake was adjusted to the group with the lowest energy intake. Indexes of liver damage and inflammation, intestinal barrier function, and toll-like receptor 4 (Tlr4) signaling in the liver were determined.Results: The liver histology scores significantly increased from 8 to 13 wk (+31%) in WSD-fed mice and were significantly higher than in controls (P ≤ 0.05 for both time comparisons), whereas scores did not differ between C diet-fed and WSD + Gln-fed mice after 13 wk of feeding. The occludin protein concentrations in the small intestinal tissue were similarly reduced in both WSD-fed groups when compared with controls [WSD compared with C diet (-53%) and C diet + Gln (-42%), P ≤ 0.05; WSD + Gln compared with C diet + Gln (-34%), P ≤ 0.05] after 13 wk, whereas the expression of myeloid differentiation primary response gene 88 mRNA and concentration of inducible nitric oxide synthase and 4-hydroxynonenal protein adducts were significantly higher only in livers of WSD-fed mice (P ≤ 0.05 for the WSD group compared with all other groups; WSD + Gln group compared with the C diet groups: NS).Conclusion: Taken together, our data suggest that oral Gln supplementation protects mice from the progression of pre-existing, WSD-induced NASH.


Asunto(s)
Suplementos Dietéticos , Progresión de la Enfermedad , Glutamina/administración & dosificación , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Administración Oral , Aldehídos/metabolismo , Animales , Glucemia/metabolismo , Dieta Occidental , Modelos Animales de Enfermedad , Femenino , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ocludina/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
6.
Amino Acids ; 49(7): 1215-1225, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28434046

RESUMEN

Dietary arginine (Arg) supplementation has been proposed to have positive effects on the development of liver diseases. In the present study, we investigate if an oral Arg supplementation in diet protects mice fed a fructose, fat and cholesterol enriched Western-style diet (WSD) from the development of non-alcoholic steatohepatitis (NASH). Female C57BL/6J mice were fed a liquid control diet or a liquid WSD ± Arg (2.49 g/kg body weight/day) for 6 weeks. Indices of liver injury, glucose metabolism and intestinal permeability were determined. While Arg supplementation had no effects on body weight gain, fasting blood glucose levels were significantly lower in WSD+Arg-fed mice than in C+Arg-fed animals. WSD-fed mice developed liver steatosis accompanied with inflammation, both being significantly attenuated in WSD+Arg-fed mice. These effects of Arg supplementation went along with a protection against WSD-induced decreased tight junction protein levels in the upper parts of the small intestine, increased levels of bacterial endotoxin in portal plasma as well as increased hepatic toll-like receptor-4 mRNA and 4-hydroxynonenal protein adduct levels. In conclusion, Arg supplementation may protect mice from the development of NASH.


Asunto(s)
Arginina/farmacología , Suplementos Dietéticos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Administración Oral , Animales , Glucemia/metabolismo , Femenino , Intestino Delgado/metabolismo , Intestino Delgado/patología , Hígado/metabolismo , Hígado/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/patología , Uniones Estrechas/patología , Receptor Toll-Like 4/sangre
7.
Eur J Nutr ; 56(8): 2519-2527, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27496089

RESUMEN

PURPOSE: Impairments of intestinal barrier function are discussed as risk factors for the development and progression of non-alcoholic fatty liver disease (NAFLD). Studies suggest an association between arginine/citrulline homeostasis and the development of liver damages. Here, the effect of an oral L-citrulline (Cit) supplement on the development of a Western-style diet (WSD)-induced NAFLD was determined in mice. METHODS: Female 6- to 8-week-old C57BL/6J mice were either pair-fed a liquid Western-style or control diet (C) ± 2.5 g/kg bodyweight Cit for 6 weeks (C + Cit or WSD + Cit). Indices of liver damage, glucose metabolism, intestinal barrier function and NO synthesis were measured. RESULTS: While bodyweight gain was similar between groups, markers of glucose metabolism like fasting blood glucose and HOMA index and markers of liver damage like hepatic triglyceride levels, number of neutrophils and plasminogen activator inhibitor-1 protein levels were significantly lower in WSD + Cit-fed mice when compared to WSD-fed mice only. Protein levels of the tight junction proteins occludin and zonula occludens-1 in duodenum were significantly lower in mice fed a WSD when compared to those fed a WSD + Cit (-~70 and -~60 %, respectively, P < 0.05), whereas portal endotoxin levels, concentration of 3-nitrotyrosine protein adducts in duodenum and toll-like receptor-4 mRNA expression in livers of WSD + Cit-fed mice were markedly lower than in WSD-fed mice (-~43 %, P = 0.056; -~80 and -~48 %, respectively, P < 0.05). CONCLUSION: Our data suggest that the protective effects of supplementing Cit on the development of NAFLD in mice are associated with a decreased translocation of endotoxin into the portal vein.


Asunto(s)
Citrulina/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Biomarcadores/sangre , Peso Corporal , Dieta Occidental , Suplementos Dietéticos , Modelos Animales de Enfermedad , Duodeno/efectos de los fármacos , Duodeno/metabolismo , Endotoxinas/sangre , Femenino , Insulina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ocludina/genética , Ocludina/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Sustancias Protectoras/farmacología , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Triglicéridos/sangre , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
8.
J Gastroenterol Hepatol ; 32(3): 708-715, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27404046

RESUMEN

BACKGROUND AND AIM: It has been suggested in several studies that an increased translocation of bacterial lipopolysaccharide (LPS) and, subsequently, an activation of toll-like receptor (TLR)-dependent signaling pathways in the liver may contribute to the development of non-alcoholic fatty liver disease. METHODS: Eight-week-old lipopolysaccharide-binding protein (LBP)-/- and wild-type (WT) mice were pair fed either a liquid diet rich in fat, fructose, and cholesterol (Western-style diet [WSD]) or a control liquid diet for 8 weeks. Parameters of liver injury, markers of TLR-4-dependent signaling pathway, and glucose/lipid metabolism were determined. RESULTS: Despite similar total caloric intake, weight gain, fasting blood glucose levels, and liver-to-bodyweight ratio, indices of liver damage determined by liver histology and transaminases were markedly lower in WSD-fed LBP-/- mice than in WSD-fed WT animals. In line with these findings, number of neutrophils, F4/80 positive cells, and plasminogen activator inhibitor 1 were only found to be significantly increased in livers of WSD-fed WT mice. While mRNA expressions of TLR-4 and myeloid differentiation primary response 88 were similar between WSD-fed groups, concentrations of inducible nitric oxide synthase protein and 4-hydroxynonenal protein adducts were significantly higher in livers of WSD-fed WT mice than in WSD-fed LBP-/- animals. Markers of lipid metabolism, for example, sterol regulatory element-binding protein 1c and fatty acid synthase per se, were significantly lower in livers of LBP-/- mice; however, mRNA expressions did not differ between controls and WSD-fed mice within the respective mouse strain. CONCLUSION: Taken together, our results suggest that LBP is a critical factor in the development of non-alcoholic fatty liver disease in mice.


Asunto(s)
Proteínas de Fase Aguda/deficiencia , Proteínas de Fase Aguda/fisiología , Proteínas Portadoras/fisiología , Lipopolisacáridos/metabolismo , Hígado/metabolismo , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/fisiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Animales , Modelos Animales de Enfermedad , Glucosa/metabolismo , Metabolismo de los Lípidos , Ratones Endogámicos BALB C , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Transducción de Señal/fisiología , Receptores Toll-Like/metabolismo
9.
Gut ; 65(9): 1564-71, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26006114

RESUMEN

OBJECTIVE: Increased fasting blood ethanol levels, suggested to stem from an increased endogenous ethanol synthesis in the GI tract, are discussed to be critical in the development of non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to further delineate the mechanisms involved in the elevated blood ethanol levels found in patients with NAFLD. DESIGN: In 20 nutritionally and metabolically screened children displaying early signs of NAFLD and 29 controls (aged 5-8 years), ethanol plasma levels were assessed. Ethanol levels along the GI tract, in vena cava and portal vein, intestinal and faecal microbiota, and activity of alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1) were measured in wild-type, ob/ob and anti-TNFα antibody (aT) treated ob/ob mice. RESULTS: Despite not differing in dietary pattern or prevalence of intestinal overgrowth, fasting ethanol levels being positively associated with measures of insulin resistance were significantly higher in children with NAFLD than in controls. Ethanol levels were similar in portal vein and chyme obtained from different parts of the GI tract between groups while ethanol levels in vena cava plasma were significantly higher in ob/ob mice. ADH activity was significantly lower in liver tissue obtained from ob/ob mice in comparison to wild-type controls and ob/ob mice treated with aT. CONCLUSIONS: Taken together, our data of animal experiments suggest that increased blood ethanol levels in patients with NAFLD may result from insulin-dependent impairments of ADH activity in liver tissue rather than from an increased endogenous ethanol synthesis. TRIAL REGISTRATION NUMBER: NCT01306396.


Asunto(s)
Alcohol Deshidrogenasa , Etanol , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico , Alcohol Deshidrogenasa/sangre , Alcohol Deshidrogenasa/metabolismo , Animales , Índice de Masa Corporal , Niño , Preescolar , Citocromo P-450 CYP2E1/sangre , Etanol/sangre , Etanol/metabolismo , Femenino , Humanos , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fenómenos Fisiológicos de la Nutrición , Estadística como Asunto
10.
Br J Nutr ; 116(10): 1682-1693, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27876107

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide with universally accepted treatments still lacking. Oral supplementation of sodium butyrate (SoB) has been suggested to attenuate liver damage of various aetiologies. Our study aimed to further delineate mechanisms involved in the SoB-dependent hepatic protection using a mouse model of fructose-induced NAFLD and in in vitro models. C57BL/6J mice were either pair-fed a fructose-enriched liquid diet ±0·6 g/kg body weight per d SoB or standard chow for 6 weeks. Markers of liver damage, intestinal barrier function, glucose metabolism, toll-like receptor-4 (TLR-4) and melatonin signalling were determined in mice. Differentiated human carcinoma colon-2 (Caco-2) and J774A.1 cells were used to determine molecular mechanisms involved in the effects of SoB. Despite having no effects on markers of intestinal barrier function and glucose metabolism or body weight gain, SoB supplementation significantly attenuated fructose-induced hepatic TAG accumulation and inflammation. The protective effects of SoB were associated with significantly lower expression of markers of the TLR-4-dependent signalling cascade, concentrations of inducible nitric oxide synthase (iNOS) protein and 4-hydroxynonenal protein adducts in liver. Treatment with SoB increased melatonin levels and expression of enzymes involved in melatonin synthesis in duodenal tissue and Caco-2 cells. Moreover, treatment with melatonin significantly attenuated lipopolysaccharide-induced expression of iNOS and nitrate levels in J774A.1 cells. Taken together, our results indicated that the protective effects of SoB on the development of fructose-induced NAFLD in mice are associated with an increased duodenal melatonin synthesis and attenuation of iNOS induction in liver.

12.
J Nutr ; 145(10): 2280-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26246326

RESUMEN

BACKGROUND: Genetic factors, a diet rich in fat and sugar, and an impaired intestinal barrier function are critical in the development of nonalcoholic steatohepatitis (NASH). The nonessential amino acid glutamine (Gln) has been suggested to have protective effects on intestinal barrier function but also against the development of liver diseases of various etiologies. OBJECTIVE: The effect of oral Gln supplementation on the development of Western-style diet (WSD)-induced NASH in mice was assessed. METHODS: Female 6- to 8-wk-old C57BL/6J mice were pair-fed a control (C) diet or a WSD alone or supplemented with 2.1 g l-Gln/kg body weight for 6 wk (C+Gln or WSD+Gln). Indexes of liver damage, lipid peroxidation, and glucose metabolism and endotoxin concentrations were measured. RESULTS: Although Gln supplementation had no effect on the loss of the tight junction protein occludin, the increased portal endotoxin and fasting glucose concentrations found in WSD-fed mice, markers of liver damage (e.g., nonalcoholic fatty liver disease activity score and number of neutrophils in the liver) were significantly lower in the WSD+Gln group than in the WSD group (~47% and ~60% less, respectively; P < 0.05). Concentrations of inducible nitric oxide synthase (iNOS) protein and 3-nitrotyrosin protein adducts were significantly higher in livers of WSD-fed mice than in all other groups (~8.6- and ~1.9-fold higher, respectively, compared with the C group; P < 0.05) but did not differ between WSD+Gln-, C-, and C+Gln-fed mice. Hepatic tumor necrosis factor α and plasminogen activator inhibitor 1 concentrations were significantly higher in WSD-fed mice (~1.6- and ~1.8-fold higher, respectively; P < 0.05) but not in WSD+Gln-fed mice compared with C mice. CONCLUSION: Our data suggest that the protective effects of oral Gln supplementation on the development of WSD-induced NASH in mice are associated with protection against the induction of iNOS and lipid peroxidation in the liver.


Asunto(s)
Antioxidantes/uso terapéutico , Suplementos Dietéticos , Glutamina/uso terapéutico , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Dieta Occidental/efectos adversos , Duodeno/inmunología , Duodeno/metabolismo , Duodeno/patología , Endotoxinas/sangre , Femenino , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Peroxidación de Lípido , Hígado/enzimología , Hígado/patología , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Receptor de Insulina/agonistas , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Organismos Libres de Patógenos Específicos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Tirosina/análogos & derivados , Tirosina/antagonistas & inhibidores , Tirosina/metabolismo
13.
Br J Nutr ; 114(11): 1745-55, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26450277

RESUMEN

Overnutrition, insulin resistance and an impaired intestinal barrier function are discussed as critical factors in the development of non-alcoholic fatty liver disease. Not only butyrate-producing probiotics as well as supplementation of sodium butyrate (SoB) have been suggested to bear protective effects on liver damage of various aetiologies. However, whether an oral consumption of SoB has a protective effect on Western-style diet (WSD)-induced non-alcoholic steatohepatitis (NASH) and if so molecular mechanism involved has not yet been determined. Eight-week-old C57BL/6J mice were pair-fed either a liquid control or WSD±0·6 g/kg body weight SoB. After 6 weeks, markers of liver damage, inflammation, toll-like receptor (TLR)-4 signalling, lipid peroxidation and glucose as well as lipid metabolism were determined in the liver tissue. Tight junction protein levels were determined in the duodenal tissue. SoB supplementation had no effects on the body weight gain or liver weight of WSD-fed mice, whereas liver steatosis and hepatic inflammation were significantly decreased (e.g. less inflammatory foci and neutrophils) when compared with mice fed only a WSD. Tight junction protein levels in duodenum, hepatic mRNA expression of TLR-4 and sterol regulatory element-binding protein 1c were altered similarly in both WSD groups when compared with controls, whereas protein levels of myeloid differentiation primary response gene 88, inducible nitric oxide synthase, 4-hydroxynonenal protein adducts and F4/80 macrophages were only significantly induced in livers of mice fed only the WSD. In summary, these data suggest that an oral supplementation of SoB protects mice from inflammation in the liver and thus from the development of WSD-induced NASH.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Ácido Butírico/uso terapéutico , Suplementos Dietéticos , Duodeno/inmunología , Mucosa Intestinal/inmunología , Hígado/inmunología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Animales , Biomarcadores/metabolismo , Dieta Occidental/efectos adversos , Duodeno/metabolismo , Duodeno/patología , Femenino , Fármacos Gastrointestinales/uso terapéutico , Regulación de la Expresión Génica , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Peroxidación de Lípido , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Infiltración Neutrófila , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
14.
Huan Jing Ke Xue ; 43(4): 2030-2038, 2022 Apr 08.
Artículo en Zh | MEDLINE | ID: mdl-35393826

RESUMEN

It has been verified that, as an emerging contaminant, microplastics are capable of adsorbing certain traditional contaminants like the heavy metal Cd. However, the majority of previous studies only focused on certain types of virgin microplastics, especially for PE and PS. In addition, this adsorption process might be affected by microplastics inevitably undergoing aging and consequent changes in the natural environment. Unfortunately, the relevant reports on aging effects were mainly about organic pollutants, rather than heavy metals. By far, there have been few comprehensive and mechanistic studies on the key aging effects on the Cd adsorption by various types of microplastics. In this study, five representative types of microplastics (i.e., PS, ABS, PP, PVC, and PET) were selected for aging by ultraviolet radiation, and the physicochemical properties of virgin and aged microplastics were thoroughly compared, including specific surface area, crystallinity, surface functional groups, and surface elements. Accordingly, the changes in adsorption isotherms of Cd by microplastics were discussed. The results showed that:① aging induced non-significant changes in specific surface area but a significant decrease in crystallinity. Surface functional groups also changed, including the emergence of a C=O functional group on PS and ABS, the decrease in C=C absorption peak intensity on ABS, and the increase in absorption peak intensities of C=O, C-O, and polar ester groups on PET. Regarding surface C content, C=C/C-C decreased, whereas C-O and O-C=O increased. The total O content and O/C significantly increased as well. ② The Langmuir model well-fitted the adsorption isotherms of Cd by virgin and aged microplastics. Aging significantly expanded the adsorption capacity of Cd by microplastics, as the order of saturated adsorption capacity before aging was ABS (0.2284 mg·g-1)>PVC (0.1360 mg·g-1)>PS (0.1286 mg·g-1)>PP (0.1005 mg·g-1)>PET (0.0462 mg·g-1) and then became PS (0.2768 mg·g-1)>ABS (0.2586 mg·g-1)>PVC (0.1776 mg·g-1)>PP (0.1721 mg·g-1)>PET (0.0951 mg·g-1) after aging. ③ Both crystallinity and surface functional groups played key roles in the adsorption of Cd by microplastics. As for virgin microplastics, crystallinity was negatively correlated with the saturated adsorption capacity of Cd, because the amorphous regions contributed most to Cd adsorption. Aging brought about the decrease in crystallinity and the increase in amorphous regions, which further promoted the oxidation reaction on microplastics. Consequently, oxygen-containing functional groups increased on the surface and eventually expanded the adsorption capacity of Cd by microplastics. Note that certain specific functional groups of various microplastics also had impacts on the adsorption process. These results provide valuable information about the environmental behaviors and interactions of microplastics and heavy metals in nature.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Cadmio , Microplásticos , Plásticos/química , Cloruro de Polivinilo , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
15.
Nutrients ; 13(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809593

RESUMEN

The addition of plant oils such as soybean oil (S) to a diet rich in saturated fatty acids is discussed as a possible route to prevent or diminish the development of metabolic disease. Here, we assessed whether a butterfat-rich diet fortified with S affects the development of early non-alcoholic steatohepatitis (NASH) and glucose intolerance. Female C57BL/6J mice were fed a standard-control diet (C); a fat-, fructose-, and cholesterol-rich diet (FFC, 25E% butterfat, 50% (wt./wt.) fructose, 0.16% (wt./wt.) cholesterol); or FFC supplemented with S (FFC + S, 21E% butterfat + 4E% S) for 13 weeks. Indicators of liver damage, inflammation, intestinal barrier function, and glucose metabolism were measured. Lipopolysaccharide (LPS)-challenged J774A.1 cells were incubated with linolenic and linoleic acids (ratio 1:7.1, equivalent to S). The development of early NASH and glucose intolerance was significantly attenuated in FFC + S-fed mice compared to FFC-fed mice associated with lower hepatic toll-like receptor-4 mRNA expression, while markers of intestinal barrier function were significantly higher than in C-fed mice. Linolenic and linoleic acid significantly attenuated LPS-induced formation of reactive nitrogen species and interleukin-1 beta mRNA expression in J774A.1 cells. Our results indicate that fortifying butterfat with S may attenuate the development of NASH and glucose intolerance in mice.


Asunto(s)
Mantequilla/efectos adversos , Alimentos Fortificados , Intolerancia a la Glucosa/prevención & control , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Aceite de Soja/uso terapéutico , Animales , Arginasa/metabolismo , Western Blotting , Grasas de la Dieta/efectos adversos , Endotoxinas/sangre , Ácidos Grasos no Esterificados/sangre , Femenino , Intolerancia a la Glucosa/etiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , PPAR gamma/sangre , Peroxidasa/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Aceite de Soja/administración & dosificación , Factor de Necrosis Tumoral alfa/sangre
16.
Redox Biol ; 41: 101879, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33550112

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is by now the most prevalent liver disease worldwide. The non-proteogenic amino acid l-citrulline (L-Cit) has been shown to protect mice from the development of NAFLD. Here, we aimed to further assess if L-Cit also attenuates the progression of a pre-existing diet-induced NAFLD and to determine molecular mechanisms involved. Female C57BL/6J mice were either fed a liquid fat-, fructose- and cholesterol-rich diet (FFC) or control diet (C) for 8 weeks to induce early stages of NASH followed by 5 more weeks with either FFC-feeding +/- 2.5 g L-Cit/kg bw or C-feeding. In addition, female C57BL/6J mice were either pair-fed a FFC +/- 2.5 g L-Cit/kg bw +/- 0.01 g/kg bw i.p. N(ω)-hydroxy-nor-l-arginine (NOHA) or C diet for 8 weeks. The protective effects of supplementing L-Cit on the progression of a pre-existing NAFLD were associated with an attenuation of 1) the increased translocation of bacterial endotoxin and 2) the loss of tight junction proteins as well as 3) arginase activity in small intestinal tissue, while no marked changes in intestinal microbiota composition were prevalent in small intestine. Treatment of mice with the arginase inhibitor NOHA abolished the protective effects of L-Cit on diet-induced NAFLD. Our results suggest that the protective effects of L-Cit on the development and progression of NAFLD are related to alterations of intestinal arginase activity and intestinal permeability.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Arginasa , Citrulina , Dieta Alta en Grasa , Suplementos Dietéticos , Femenino , Hígado , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 4
17.
PLoS One ; 15(9): e0237946, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32881925

RESUMEN

Dietary fat is discussed to be critical in the development of non-alcoholic fatty liver disease. Here, we assess the effect of exchanging dietary fat source from butterfat to extra virgin olive oil on the progression of an already existing diet-induced non-alcoholic fatty liver disease in mice. Female C57BL/6J mice were fed a liquid butterfat-, fructose- and cholesterol-rich diet (BFC, 25E% from butterfat) or control diet (C, 12%E from soybean oil) for 13 weeks. In week 9, fat sources of some BFC- and C-fed mice were switched either to 25E% or 12E% olive oil (OFC and CO). Glucose and insulin tolerance tests were performed, and markers of liver damage and glucose metabolism were assessed. After 6 weeks of feeding, BFC-fed mice had developed marked signs of insulin resistance, which progressed to week 12 being not affected by the exchange of fat sources. Liver damage was similar between BFC- and OFC-fed mice. Markers of lipid metabolism and lipid peroxidation in liver and of insulin signaling in liver and muscle were also similarly altered in BFC- and OFC-fed mice. Taken together, our data suggest that exchanging butterfat with extra virgin olive oil has no effect on the progression of non-alcoholic fatty liver disease and glucose tolerance in mice.


Asunto(s)
Resistencia a la Insulina , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/patología , Aceite de Oliva/farmacología , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Progresión de la Enfermedad , Femenino , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/veterinaria , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Nutrients ; 12(4)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235497

RESUMEN

Sodium butyrate (SoB) supplementation has been suggested to attenuate the development of non-alcoholic fatty liver disease (NAFLD). Here, we determined the therapeutic potential of SoB on NAFLD progression and molecular mechanism involved. Eight-week old C57BL/6J mice were pair-fed a fat-, fructose- and cholesterol-rich diet (FFC) or control diet (C). After 8 weeks, some mice received 0.6g SoB/kg bw in their respective diets (C+SoB; FFC+SoB) or were maintained on C or FFC for the next 5 weeks of feeding. Liver damage, markers of glucose metabolism, inflammation, intestinal barrier function and melatonin metabolism were determined. FFC-fed mice progressed from simple steatosis to early non-alcoholic steatohepatitis, along with significantly higher TNFα and IL-6 protein levels in the liver and impaired glucose tolerance. In FFC+SoB-fed mice, disease was limited to steatosis associated with protection against the induction of Tlr4 mRNA and iNOS protein levels in livers. SoB supplementation had no effect on FFC-induced loss of tight junction proteins in the small intestine but was associated with protection against alterations in melatonin synthesis and receptor expression in the small intestine and livers of FFC-fed animals. Our results suggest that the oral supplementation of SoB may attenuate the progression of simple steatosis to steatohepatitis.


Asunto(s)
Ácido Butírico/administración & dosificación , Ácido Butírico/farmacología , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Animales , Colesterol en la Dieta/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Glucosa/metabolismo , Inflamación , Interleucina-6/metabolismo , Intestino Delgado/metabolismo , Hígado/metabolismo , Melatonina/metabolismo , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Metabolism ; 109: 154283, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32497536

RESUMEN

BACKGROUND: Absolute dietary fat intake but even more so fatty acid pattern is discussed to be critical in the development of non-alcoholic fatty liver disease (NAFLD). Here, we determined if switching a butterfat enriched diet to a rapeseed oil (RO) enriched diet affects progression of an existing NAFLD and glucose intolerance in mice. METHODS: For eight weeks, female C57Bl/6J mice were either fed a liquid control (C) or a butterfat-, fructose- and cholesterol-rich diet (BFC, 25E% butterfat) to induce early signs of steatohepatitis and glucose intolerance in mice. For additional five weeks mice received either BFC or C or a fat-, fructose- and cholesterol-rich and control diet, in which butterfat was replaced with RO (ROFC and CRO). Markers of glucose metabolism, liver damage and intestinal barrier were assessed. RESULTS: Exchanging butterfat with RO attenuated the progression of BFC diet-induced NAFLD and glucose intolerance. Beneficial effects of RO were associated with lower portal endotoxin levels and an attenuation of the induction of the toll-like receptor-4-dependent signaling cascades in liver. Peroxisome proliferator-activated receptor γ activity was induced in small intestine of ROFC-fed mice. CONCLUSION: Taken together, exchanging butterfat with RO attenuated the progression of diet-induced steatohepatitis and glucose intolerance in mice.


Asunto(s)
Mantequilla/efectos adversos , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/prevención & control , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Aceite de Brassica napus/uso terapéutico , Animales , Progresión de la Enfermedad , Endotoxinas/metabolismo , Femenino , Riñón/química , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 4
20.
Eur J Med Chem ; 203: 112618, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32682200

RESUMEN

On the basis and continuation of our previous studies on anti-tubulin and anti-gastric cancer agents, novel tertiary amide derivatives incorporating benzothiazole moiety were synthesized and the antiproliferative activity was studied in vitro. Preliminary structure activity relationships (SARs) were explored according to the in vitro antiproliferative activity results. Some of compounds could significantly inhibit the proliferation of three cancer cells (HCT-116, MGC-803 and PC-3 cells) and compound F10 exhibited excellent antiproliferative activity against HCT-116 cells (IC50 = 0.182 µM), MGC-803 cells (IC50 = 0.035 µM), PC-3 cells(IC50 = 2.11 µM) and SGC-7901 cells (IC50 = 0.049 µM). Compound F10 effectively inhibited tubulin polymerization (IC50 = 1.9 µM) and bound to colchicine binding site of tubulin. Molecular docking results suggested compound F10 could bind tightly into the colchicine binding site of ß-tubulin. Moreover, compound F10 could regulate the Hippo/YAP signaling pathway. Compound F10 activated Hippo signaling pathway from its very beginning MST1/2, as the result of Hippo cascade activation YAP were inhibited. And then it led to a decrease of c-Myc and Bcl-2 expression. Further molecular experiments showed that compound F10 arrested at G2/M phase, inhibited cell colony formatting and induced extrinsic and intrinsic apoptosis in MGC-803 and SGC-7901 cells. Collectively, compound F10 was the first to be reported as a new anticancer agent in vitro via inhibiting tubulin polymerization and activating the Hippo signaling pathway.


Asunto(s)
Amidas/química , Benzotiazoles/química , Benzotiazoles/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/patología , Tubulina (Proteína)/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Diseño de Fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Vía de Señalización Hippo , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA