Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 529(4): 1165-1172, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819581

RESUMEN

Renal stem or progenitor cells (RSCs), labeled with CD24 and CD133, play an important role during the repair of renal injury. Bmi-1 is a critical factor in regulating stemness of adult stem cells or progenitor cells. To investigate whether Bmi-1 determines the stemness of RSCs by inhibiting p16 and p53, and/or maintaining redox balance, RSCs were isolated, cultured and analyzed for stemness characterizations. In RSCs from Bmi-1-deficient (Bmi-1-/-) mice and wild type (WT) littermates, self-renewal, stemness, and expressions of molecules for regulating redox balance and cell cycle progression were compared. Self-renewal of RSCs from Bmi-1 and p16 double-knockout (Bmi-1-/-p16-/-), Bmi-1 and p53 double-knockout (Bmi-1-/-p53-/-) and N-acetylcysteine (NAC)-treated Bmi-1-/- mice were further analyzed for amelioration. Human renal proximal tubular epithelial cells (HK2) were also used for signaling analysis. Our results showed that third-passage RSCs from WT mice had good stemness; Bmi-1 deficiency led to the decreased stemness, and the increased apoptosis for RSCs; NAC treatment or p16/p53 deletion ameliorated the decreased self-renewal of RSCs in Bmi-1 deficiency mice by maintaining redox balance or inhibiting cell cycle arrest respectively; Oxidative stress (OS) could negatively feedback regulate the mRNA expressions of Bmi-1, p16 and p53. In conclusion, Bmi-1 determined the stemness of RSCs through maintaining redox balance and preventing cell cycle arrest. Thus, Bmi-1 signaling molecules would be novel therapeutic targets for maintaining RSCs and hampering the progression of kidney diseases to prevent renal failure.


Asunto(s)
Riñón/citología , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Células Madre/metabolismo , Acetilcisteína/farmacología , Animales , Autorrenovación de las Células/efectos de los fármacos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Retroalimentación Fisiológica , Eliminación de Gen , Humanos , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Complejo Represivo Polycomb 1/deficiencia , Proteínas Proto-Oncogénicas/deficiencia , Células Madre/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
2.
J Clin Lab Anal ; 34(11): e23495, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32710445

RESUMEN

BACKGROUND: BTBD7_hsa_circ_0000563, which is located on chromosome 14, contains conserved binding sites with miR-155/130a and RNA-binding proteins according to bioinformatic prediction. We investigated the association of BTBD7_hsa_circ_0000563 expression in coronary artery segments with atherosclerotic stenosis and identified the proteome-wide BTBD7_hsa_circ_0000563-regulated proteins in human coronary artery. METHODS: The atherosclerotic grade and extent in coronary artery segments were determined by hematoxylin and eosin staining. BTBD7_hsa_circ_0000563 expression in eight coronary artery segments from one patient was quantified by RT-qPCR assay. A proteomic approach was adopted to reveal significant differences in protein expression between among four groups differing in their BTBD7_hsa_circ_0000563 expression levels. RESULTS: The RT-qPCR assay revealed that coronary artery segments with severe atherosclerotic stenosis had significantly low BTBD7_hsa_circ_0000563 levels. The proteomic analysis identified 49 differentially expressed proteins among the segment groups with different BTBD7_hsa_circ_0000563 expression levels, of which 10 were downregulated and 39 were upregulated with increases in the BTBD7_hsa_circ_0000563 level. The 10 downregulated proteins were P61626 (LYSC_HUMAN), P02760 (AMBP_HUMAN), Q02985 (FHR3_HUMAN), P01701 (LV151_HUMAN), P06312(KV401_HUMAN), P01624 (KV315_HUMAN), P13671 (CO6_HUMAN), P01700(LV147_HUMAN), Q9Y287(ITM2B_HUMAN), and A0A075B6I0 (LV861_HUMAN). The top 10 upregulated proteins were Q92552 (RT27_HUMAN), Q9UJY1(HSPB8_HUMAN), Q9Y235(ABEC2_HUMAN), P19022 (CADH2_HUMAN), O43837(IDH3B_HUMAN), Q9H479(FN3K_HUMAN), Q9UM22(EPDR1_HUMAN), P48681(NEST_HUMAN), Q9NRP0(OSTC_HUMAN), and Q15628(TRADD_HUMAN). CONCLUSION: BTBD7_hsa_circ_0000563 is involved in the atherosclerotic changes in human coronary artery segments. Verification, mechanistic, and function studies are needed to confirm whether patients with coronary artery disease would benefit from such personalized medicine in the future.


Asunto(s)
Vasos Coronarios , Proteoma , ARN Circular , Anciano , Vasos Coronarios/química , Vasos Coronarios/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas/genética , Proteoma/análisis , Proteoma/genética , Proteoma/metabolismo , Proteómica , ARN Circular/genética , ARN Circular/metabolismo
3.
Biochem Biophys Res Commun ; 482(4): 742-749, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27871857

RESUMEN

The regeneration of injured tubular cell occurs primarily from intrinsic renal stem/progenitor cells (RSCs) labeled with CD24 and CD133 after acute tubular necrosis (ATN). Bmi-1 plays a crucial role in regulating self-renewal, differentiation and aging of multiple adult stem cells and progenitor cells. Bmi-1 was rapidly elevated in the induction of adult kidney regeneration by renal injury. To determine whether Bmi-1 maintained mobilization of RSCs in the protection from ATN, glycerol-rhabdomyolysis-induced ATN were performed in wild type (WT) and Bmi-1-deficient (Bmi-1-/-) mice. Their ATN phenotypes were analyzed; CD24 and CD133 double positive (CD24+CD133+) cells were measured; and the levels of serum urea nitrogen (SUN) and serum creatinine (SCr) were detected. We found that CD24+CD133+ RSCs were mobilized in WT ATN mice with the increased expression of Bmi-1; Bmi-1 deficiency led to increased tubular cast formation and necrosis, elevated levels of SUN and SCr, decreased tubular proliferation, and immobilized ratio of RSCs in ATN. These findings indicated that Bmi-1 played a critical role in the protection from ATN by maintaining mobilization of RSCs and would be a novel therapeutic target for preventing the progression of ATN.


Asunto(s)
Necrosis Tubular Aguda/metabolismo , Riñón/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Células Madre/citología , Antígeno AC133/metabolismo , Animales , Antígeno CD24/metabolismo , Diferenciación Celular , Creatinina/metabolismo , Progresión de la Enfermedad , Glicerol/química , Masculino , Ratones , Regeneración , Rabdomiólisis/metabolismo
4.
Anat Sci Int ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696102

RESUMEN

In the domain of anatomy, some Chinese characters in anatomical terms possess distinctive morphological significance. Chinese characters evolved from pictographic characters, with some of these pictographs being created by ancient people based on their own body structure. This implies that the comprehension and depiction of the human body structure have been integral since the inception of Chinese characters, and this knowledge has been passed down and developed through the continued inheritance of Chinese characters. Even today, certain characters retain the appearance to reflect the shape of the human body structure. By examining the characters related to vertebrae, cranial fontanel and heart, we can find the unique and enduring link between Chinese characters and the fields of anatomy as well as Chinese traditional medicine.

5.
ACS Appl Mater Interfaces ; 16(20): 25799-25812, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38727024

RESUMEN

The excess production of reactive oxygen species (ROS) will delay tooth extraction socket (TES) healing. In this study, we developed an injectable thermosensitive hydrogel (NBP@BP@CS) used to treat TES healing. The hydrogel formulation incorporated black phosphorus (BP) nanoflakes, recognized for their accelerated alveolar bone regeneration and ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator aimed at enhancing angiogenesis. In vivo investigations strongly demonstrated that NBP@BP@CS improved TES healing due to antioxidation and promotion of alveolar bone regeneration by BP nanoflakes. The sustained release of NBP from the hydrogel promoted neovascularization and vascular remodeling. Our results demonstrated that the designed thermosensitive hydrogel provided great opportunity not only for ROS elimination but also for the promotion of osteogenesis and angiogenesis, reflecting the "three birds with one stone" concept, and has tremendous potential for rapid TES healing.


Asunto(s)
Hidrogeles , Fósforo , Extracción Dental , Cicatrización de Heridas , Animales , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Fósforo/química , Alveolo Dental/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Osteogénesis/efectos de los fármacos , Ratas , Regeneración Ósea/efectos de los fármacos , Masculino
6.
Sci China Life Sci ; 67(5): 1010-1026, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38489007

RESUMEN

Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.


Asunto(s)
Pérdida de Hueso Alveolar , Berberina , Regeneración Ósea , Factor Estimulante de Colonias de Macrófagos , Macrófagos , Células Madre Mesenquimatosas , Berberina/farmacología , Humanos , Animales , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Regeneración Ósea/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratas , Factor Estimulante de Colonias de Macrófagos/metabolismo , Pérdida de Hueso Alveolar/metabolismo , Masculino , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Células Cultivadas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones
7.
Adv Healthc Mater ; : e2400533, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722018

RESUMEN

Periodontitis, a prevalent inflammatory condition in the oral cavity, is closely associated with oxidative stress-induced tissue damage mediated by excessive reactive oxygen species (ROS) production. The jaw vascular unit (JVU), encompassing both vascular and lymphatic vessels, plays a crucial role in maintaining tissue fluid homeostasis and contributes to the pathological process in inflammatory diseases of the jaw. This study presents a novel approach for treating periodontitis through the development of an injectable thermosensitive gel (CH-BPNs-NBP). The gel formulation incorporates black phosphorus nanosheets (BPNs), which are notable for their ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator that promotes lymphatic vessel function within the JVU. These results demonstrate that the designed thermosensitive gel serve as a controlled release system, delivering BPNs and NBP to the site of inflammation. CH-BPNs-NBP not only protects macrophages and human lymphatic endothelial cells from ROS attack but also promotes M2 polarization and lymphatic function. In in vivo studies, this work observes a significant reduction in inflammation and tissue damage, accompanied by a notable promotion of alveolar bone regeneration. This research introduces a promising therapeutic strategy for periodontitis, leveraging the unique properties of BPNs and NBP within an injectable thermosensitive gel.

8.
Mol Immunol ; 158: 10-21, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37087900

RESUMEN

Human amniotic mesenchymal stem cells (hAMSCs) have attracted considerable attention as a promising regenerative therapy. Many studies reported that the conditioned medium of hAMSCs (AM-CM) exerted anti-inflammatory and immunomodulatory functions, while its underlying mechanism is poorly understood. In this study, we first confirmed that AM-CM (25%, 50%, 100%) was optimal for anti-inflammation at 24 h. Lipopolysaccharide (LPS)-induced alteration of cell morphology, the decrease of cell proliferation, and the upregulation of cell apoptosis were significantly reversed in AM-CM-treated THP-1 cells. 25% and 50% AM-CM significantly decreased LPS-induced intracellular reactive oxygen species (ROS) production and proinflammatory cytokines secretion. Mechanistically, we found that AM-CM treatment suppressed LPS-induced activation of MAPK and NF-κB pathways by inhibiting CD14/TLR4 in THP-1 cells. Meanwhile, activation of NLRP3 inflammasome was also dose-dependently attenuated by AM-CM treatment. Thus, AM-CM may exert positive influences on the inflammation microenvironment and provide a novel strategy for improving tissue regeneration.


Asunto(s)
Lipopolisacáridos , Células Madre Mesenquimatosas , Humanos , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Monocitos/metabolismo , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Receptor Toll-Like 4/metabolismo , Citocinas/metabolismo , Transducción de Señal , Inflamación/metabolismo , FN-kappa B/metabolismo , Factores Inmunológicos/farmacología , Antiinflamatorios/farmacología , Células Madre Mesenquimatosas/metabolismo
9.
J Bone Miner Res ; 38(3): 427-442, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36625422

RESUMEN

Sarcopenia increases with age, and an underlying mechanism needs to be determined to help with designing more effective treatments. This study aimed to determine whether 1,25(OH)2 D3 deficiency could cause cellular senescence and a senescence-associated secretory phenotype (SASP) in skeletal muscle cells to induce sarcopenia, whether GATA4 could be upregulated by 1,25(OH)2 D3 deficiency to promote SASP, and whether Bmi-1 reduces the expression of GATA4 and GATA4-dependent SASP induced by 1,25(OH)2 D3 deficiency in skeletal muscle cells. Bioinformatics analyses with RNA sequencing data in skeletal muscle from physiologically aged and young mice were conducted. Skeletal muscles from 2-month-old young and 2-year-old physiologically aged wild-type (WT) mice and 8-week-old WT, Bmi-1 mesenchymal transgene (Bmi-1Tg ), Cyp27b1 homozygous (Cyp27b1-/- ), and Bmi-1Tg Cyp27b1-/- mice were observed for grip strength, cell senescence, DNA damage, and NF-κB-mediated SASP signaling of skeletal muscle. We found that muscle-derived Bmi-1 and vitamin D receptor (VDR) decreased with physiological aging, and DNA damage and GATA4-dependent SASP activation led to sarcopenia. Furthermore, 1,25(OH)2 D3 deficiency promoted DNA damage-induced GATA4 accumulation in muscles. GATA4 upregulated Rela at the region from -1448 to -1412 bp at the transcriptional level to cause NF-κB-dependent SASP for aggravating cell senescence and muscular dysfunction and sarcopenia. Bmi-1 overexpression promoted the ubiquitination and degradation of GATA4 by binding RING1B, which prevented cell senescence, SASP, and dysfunctional muscle, and improved sarcopenia induced by 1,25(OH)2 D3 deficiency. Thus, Bmi-1 overexpression improves sarcopenia induced by 1,25(OH)2 D3 deficiency, downregulates GATA4-dependent Rela transcription, and sequentially inhibits GATA4-dependent SASP in muscle cells. Therefore, Bmi-1 overexpression could be used for translational gene therapy for the ubiquitination of GATA4 and prevention of sarcopenia. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Complejo Represivo Polycomb 1 , Sarcopenia , Factor de Transcripción ReIA , Animales , Ratones , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa , Envejecimiento/metabolismo , Senescencia Celular/genética , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , FN-kappa B/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/metabolismo
10.
Clin Transl Med ; 13(6): e1308, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37345264

RESUMEN

BACKGROUND: Chronic changes caused by a high-fat diet (HFD) may be associated with weakened lung function in obese patients. However, few studies have focused on the role of senescent cells in HFD-induced pulmonary fibrosis. This study aimed to determine whether (i) obesity causes the accumulation of aging cells in the lungs, (ii) p16 accumulation in aging epithelial cells or fibroblasts exacerbates long-term HFD-induced senescence-associated pulmonary fibrosis (SAPF) and (iii) p16 deletion or clearance of aging cells ameliorates HFD-induced SAPF through inactivation of the inflammasome and metabolic remodelling. METHODS: Twelve-month old male mice of p16INK4a (hereafter p16) knockout (p16-- ) and wild-type (WT), ApoE knockout (ApoE-- ) and ApoE-- p16-- were fed a HFD to induce obesity, and the effects of treatment with the senolytic drug ABT263 or the SGK1 specific inhibitor EMD638683 on fibrosis, inflammaging, gene expression, integrin-inflammasome signalling and metabolism were examined. A549 and IMR-90 cells were transduced with p16-overexpressing adenovirus, and treated with palmitic and oleic acids (P&O) to induce steatosis in vitro. RESULTS: We found that long-term HFD promoted the expression of p16 and the increase of senescent cells in the lung. P16 knockout or ABT263 treatment alleviated pulmonary fibrosis, the increase of senescent cells and senescence-associated secretory phenotype (SASP) in HFD-fed mice, as well as in P&O-treated A549 and IMR-90 cells. RNA sequencing and bioinformatics analyses revealed that p16 knockout inhibited activation of the integrin-inflammasome pathway and cellular glycolysis. Mass spectrometry, co-immunoprecipitation and GST pull-down assays demonstrated that p16 bound to the N-terminal of SGK1, thereby interfering with the interaction between the E3 ubiquitin ligase NEDD4L and SGK1, and subsequently inhibiting K48-polyubiquitin-dependent degradation of SGK1 mediated by the NEDD4L-Ubch5 complex. EMD638683 was found to alleviate HFD-induced pulmonary fibrosis and activation of the integrin-inflammasome pathway. CONCLUSION: P16 accumulation promoted activation of integrin- inflammasome pathway and cell glycolysis by binding to the N- terminal of SGK1, intefering with the interaction between the E3 ubiquitin ligase NEDD4L and SGK1, thereby inhibiting K48- polyubiquitin- dependent degradation of SGK1 mediated by the NEDD4L-Ubch5 complex. ABT263 or EMD638683 could be used as potential drugs to treat pulmonary fibrosis in obese patients.


Asunto(s)
Fibrosis Pulmonar , Ratones , Masculino , Animales , Fibrosis Pulmonar/etiología , Inflamasomas/metabolismo , Poliubiquitina , Dieta Alta en Grasa/efectos adversos , Senescencia Celular , Envejecimiento , Ubiquitina-Proteína Ligasas
11.
Aging Dis ; 14(6): 2215-2237, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199578

RESUMEN

Physiologically aged lungs are prone to senescence-associated pulmonary diseases (SAPD). This study aimed to determine the mechanism and subtype of aged T cells affecting alveolar type II epithelial (AT2) cells, which promote the pathogenesis of senescence-associated pulmonary fibrosis (SAPF). Cell proportions, the relationship between SAPD and T cells, and the aging- and senescence-associated secretory phenotype (SASP) of T cells between young and aged mice were analyzed using lung single-cell transcriptomics. SAPD was monitored by markers of AT2 cells and found to be induced by T cells. Furthermore, IFNγ signaling pathways were activated and cell senescence, SASP, and T cell activation were shown in aged lungs. Physiological aging led to pulmonary dysfunction and TGF-ß1/IL-11/MEK/ERK (TIME) signaling-mediated SAPF, which was induced by senescence and SASP of aged T cells. Especially, IFNγ was produced by the accumulated CD4+ effector memory T (TEM) cells in the aged lung. This study also found that physiological aging increased pulmonary CD4+ TEM cells, IFNγ was produced mainly by CD4+ TEM cells, and pulmonary cells had increased responsiveness to IFNγ signaling. Specific regulon activity was increased in T cell subclusters. IFNγ transcriptionally regulated by IRF1 in CD4+ TEM cells promoted the epithelial-to-mesenchymal transition by activating TIME signaling and cell senescence of AT2 cells with aging. Accumulated IRF1+CD4+ TEM produced IFNγ in lung with aging and anti-IRF1 primary antibody treatment inhibited the expression of IFNγ. Aging might drive T cell differentiation toward helper T cells with developmental trajectories and enhance cell interactions of pulmonary T cells with other surrounding cells. Thus, IFNγ transcribed by IRF1 in CD4+ effector memory T cells promotes SAPF. IFNγ produced by CD4+ TEM cells in physiologically aged lungs could be a therapeutic target for preventing SAPF.

12.
J Tissue Eng Regen Med ; 16(6): 538-549, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319819

RESUMEN

Mandible osteoporosis with age is characterized by greater fragility and accompanied with abnormal oral function. Mesenchymal stem cell transplantation can ameliorate osteoporosis. Bmi-1 is a transcriptional repressor which is an important regulator of cell cycle, stem cells self-renewal, and cell senescence. Here, we use a new kind of membrane mesenchymal stem cells (MSCs), amniotic membrane mesenchymal stem cells (AMSCs), to explore therapeutic effects on Bmi-1-deficient caused mandible osteoporosis. Phenotypes of mandibles from 5-week-old Bmi-1-deficient mice with AMSCs-based therapy were compared with age-matched Bmi-1-deficient mandibles without AMSCs-based therapy and wild-type mice. Bmi-1-deficient mice without AMSCs-based therapy displayed mandible osteoporosis accompanied with the rising senescence-associated molecules and imbalance redox homeostasis. Results showed that the alveolar bone volume, cortical thickness, type I collagen and osteocalcin immunopositive areas, mRNA expression levels of alkaline phosphatase, superoxide dismutase, gluathione reductase, and protein expression level of Runx2 were all reduced significantly in Bmi-1-/- mandibles. Protein levels of PPARγ, p16, p21, p53, and redox gene levels of Bnip3l, Cdo1, Duox1, and Duox2 were up-regulated in mandibles from vehicle-transplanted Bmi-1-/- mice. Also, osteoclasts were activated in Bmi-1-/- alveolar bone. Transplanted AMSCs migrated into mandibles and improved all the parameters in Bmi-1-/- mandibles with AMSCs-based therapy. These findings indicate that AMSCs-based therapy could rescue mandible osteoporosis induced by Bmi-1 deficiency through stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. Our findings implied that AMSCs-based therapy had preventative and therapeutic potential for mandible osteoporosis.


Asunto(s)
Resorción Ósea , Células Madre Mesenquimatosas , Osteoporosis , Amnios , Animales , Diferenciación Celular , Mandíbula/metabolismo , Ratones , Osteogénesis , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética
13.
Stem Cells Dev ; 31(17-18): 541-554, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35491665

RESUMEN

Alcohol consumption is regarded as one of the leading risk factors for secondary osteopenia. Angiogenesis and osteogenesis coupled by type-H vessels coordinate the biological process of bone homeostasis to prevent osteopenia. This study aimed to determine whether chronic alcohol inhibits type-H vessel-dependent bone formation. Two-month-old mice were fed with 5% (v/v) alcohol liquid diet (28% of calories) or normal liquid diet every day for 2 months. The tibias were isolated and detected with X-ray and microcomputed tomography. Paraffin-embedded or frozen tibial sections were prepared and used for immunohistochemical or immunofluorescence staining, respectively. Human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of alcohol, including 0 mM (0%), 8.7 mM (0.5%), 52 mM (3%), or 87 mM (5%) alcohol for 12 h. The conditioned medium of the above HUVEC cells was collected to culture human bone marrow-mesenchymal stem cells (BM-MSCs), which were induced to differentiate into osteoblasts in vitro. The alcoholic diet retarded the bone growth and led to osteoporosis, impaired bone formation of osteoblasts, and decreased CD31hiEMCNhi type-H vessel formation through inhibiting proliferation and promoting aging of endothelial cells in mice. Alcohol treatment obviously increased the expression of p16, while significantly decreased the expression of Bmi-1, CDK6, Cyclin D, E2F1, and bone morphogenetic protein (BMP)2 compared with vehicle. Alcohol inhibited the differentiation of BM-MSCs into osteoblasts through reducing the BMP2 secretion of endothelial cells in type-H vessels. Alcoholic diet impaired CD31hiEMCNhi type-H vessel formation through inhibiting proliferation and promoting aging of endothelial cells through Bmi-1/p16 signaling, and inhibited the differentiation of BM-MSCs into osteoblasts through reducing the BMP2 secretion of endothelial cells in type-H vessels. This study provides a basis for developing a new treatment strategy targeting aging endothelial cells of type-H vessel to prevent alcoholic osteopenia.


Asunto(s)
Enfermedades Óseas Metabólicas , Células Endoteliales , Envejecimiento , Animales , Enfermedades Óseas Metabólicas/metabolismo , Proliferación Celular , Humanos , Lactante , Ratones , Osteogénesis , Microtomografía por Rayos X
14.
Int J Biol Sci ; 18(5): 2091-2103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342358

RESUMEN

Osteoblastic lineage cells (OBCs) are bone-building cells and essential component of hematopoietic niche, but mechanisms whereby bone-building and hematopoiesis-supportive activities of OBCs could be regulated simultaneously remain largely unknown. Here we found that B cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) was involved in such a co-regulatory mechanism. In this study, we first found that, accompanied with marked decline of osteogenic activity, the hematopoietic niche in Bmi1 knockout (KO) mice was severely impaired and manifested as CXCL12 expression falls and LSK homing failure; however, intratibial injection with CXCL12 effectively facilitated LSK accumulation in bone marrow of Bmi1 KO mice. To try to rescue these defects in Bmi1 KO mice, we generated Bmi1KO/Sirt1Tg (KO-TG) double mutant mice with Sirt1 specific overexpression in mesenchymal progenitor cells (MPCs) in Bmi1 KO mice, and our data showed that KO-TG mice had significantly increased bone-building activity, elevated Cxcl12 expression by MPCs, increased LSK homing and expanded LSK pool in bone marrow compared to Bmi1 KO mice. Of note, similar improvements in KO-TG mice were observed in Bmi1 KO mice fed with dietary resveratrol, an established Sirt1 activator, comparing with KO control mice. Therefore, pharmacologic activation of Bmi1/Sirt1 signaling pathway could simultaneously promote bone-building and hematopoiesis-supportive activities of OBCs.


Asunto(s)
Células Madre Mesenquimatosas , Sirtuina 1 , Animales , Quimiocina CXCL12 , Hematopoyesis/genética , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
15.
Clin Transl Med ; 12(4): e574, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35390228

RESUMEN

AIMS: Senescence-associated pathological cardiac hypertrophy (SA-PCH) is associated with upregulation of foetal genes, fibrosis, senescence-associated secretory phenotype (SASP), cardiac dysfunction and increased morbidity and mortality. Therefore, we conducted experiments to investigate whether GATA4 accumulation induces SA-PCH, and whether Bmi-1-RING1B promotes GATA4 ubiquitination and its selective autophagic degradation to prevent SA-PCH. METHODS AND RESULTS: Bmi-1-deficient (Bmi-1-/- ), transgenic Bmi-1 overexpressing (Bmi-1Tg ) and wild-type (WT) mice were infused with angiotensin II (Ang II) to stimulate the development of SA-PCH. Through bioinformatics analysis with RNA sequencing data from cardiac tissues, we found that Bmi-1-RING1B and autophagy are negatively related to SA-PCH. Bmi-1 deficiency promoted GATA4-dependent SA-PCH by increasing GATA4 protein and hypertrophy-related molecules transcribed by GATA4 such as ANP and BNP. Bmi-1 deficiency stimulated NF-κB-p65-dependent SASP, leading to cardiac dysfunction, cardiomyocyte hypertrophy and senescence. Bmi-1 overexpression repressed GATA4-dependent SA-PCH. GATA4 degraded by Bmi-1 was mainly dependent on autophagy rather than proteasome. In human myocardium, p16 positively correlated with ANP and GATA4 and negatively correlated with LC3B, Bmi-1 and RING1B; GATA4 positively correlated with p62 and negatively correlated with Bmi-1 and LC3B. With increased p16 protein levels, ANP-, BNP- and GATA4-positive cells or areas increased; however, LC3B-positive cells or areas decreased in human myocardium. GATA4 is ubiquitinated after combining with Bmi-1-RING1B, which is then recognised by p62, is translocated to autophagosomes to form autophagolysosomes and degraded. Downregulated GATA4 ameliorated SA-PCH and cardiac dysfunction by reducing GATA4-dependent hypertrophy and SASP-related molecules. Bmi-1 combined with RING1B (residues 1-179) and C-terminus of GATA4 (residues 206-443 including zinc finger domains) through residues 1-95, including a RING-HC-finger. RING1B combined with C-terminus of GATA4 through the C-terminus (residues 180-336). Adeno-associated viral vector serotype 9 (AAV9)-cytomegalovirus (CMV)-Bmi-1-RING1B treatment significantly attenuated GATA4-dependent SA-PCH through promoting GATA4 autophagic degradation. CONCLUSIONS: Bmi-1-RING1B maintained cardiac function and prevented SA-PCH by promoting selective autophagy for degrading GATA4. TRANSLATIONAL PERSPECTIVE: AAV9-CMV-Bmi-1-RING1B could be used for translational gene therapy to ubiquitinate GATA4 and prevent GATA4-dependent SA-PCH. Also, the combined domains between Bmi-1-RING1B and GATA4 in aging cardiomyocytes could be therapeutic targets for identifying stapled peptides in clinical applications to promote the combination of Bmi-1-RING1B with GATA4 and the ubiquitination of GATA4 to prevent SA-PCH and heart failure. We found that degradation of cardiac GATA4 by Bmi-1 was mainly dependent on autophagy rather than proteasome, and autophagy agonists metformin and rapamycin could ameliorate the SA-PCH, suggesting that activation of autophagy with metformin or rapamycin could also be a promising method to prevent SA-PCH.


Asunto(s)
Cardiomegalia , Infecciones por Citomegalovirus , Factor de Transcripción GATA4 , Animales , Factor Natriurético Atrial/metabolismo , Autofagia/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/patología , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Metformina/farmacología , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Complejo Represivo Polycomb 1 , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas , Sirolimus/metabolismo , Ubiquitina-Proteína Ligasas
16.
Aging Cell ; 21(8): e13680, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35906886

RESUMEN

Determining the mechanism of senescence-associated pulmonary fibrosis is crucial for designing more effective treatments for chronic lung diseases. This study aimed to determine the following: whether Sirt1 and serum vitamin D decreased with physiological aging, promoting senescence-associated pulmonary fibrosis by activating TGF-ß1/IL-11/MEK/ERK signaling, whether Sirt1 overexpression prevented TGF-ß1/IL-11/MEK/ERK signaling-mediated senescence-associated pulmonary fibrosis in vitamin D-deficient (Cyp27b1-/- ) mice, and whether Sirt1 downregulated IL-11 expression transcribed by TGF-ß1/Smad2 signaling through deacetylating histone at the IL-11 promoter in pulmonary fibroblasts. Bioinformatics analysis with RNA sequencing data from pulmonary fibroblasts of physiologically aged mice was conducted for correlation analysis. Lungs from young and physiologically aged wild-type (WT) mice were examined for cell senescence, fibrosis markers, and TGF-ß1/IL-11/MEK/ERK signaling proteins, and 1,25(OH)2 D3 and IL-11 levels were detected in serum. Nine-week-old WT, Sirt1 mesenchymal transgene (Sirt1Tg ), Cyp27b1-/- , and Sirt1Tg Cyp27b1-/- mice were observed the pulmonary function, aging, and senescence-associated secretory phenotype and TGF-ß1/IL-11/MEK/ERK signaling. We found that pulmonary Sirt1 and serum vitamin D decreased with physiological aging, activating TGF-ß1/IL-11/MEK/ERK signaling, and promoting senescence-associated pulmonary fibrosis. Sirt1 overexpression improved pulmonary dysfunction, aging, DNA damage, senescence-associated secretory phenotype, and fibrosis through downregulating TGF-ß1/IL-11/MEK/ERK signaling in Cyp27b1-/- mice. Sirt1 negatively regulated IL-11 expression through deacetylating H3K9/14ac mainly at the region from -871 to -724 of IL-11 promoter, also the major binding region of Smad2 which regulated IL-11 expression at the transcriptional level, and subsequently inhibiting TGF-ß1/IL-11/MEK/ERK signaling in pulmonary fibroblasts. This signaling in aging fibroblasts could be a therapeutic target for preventing senescence-associated pulmonary fibrosis induced by vitamin D deficiency.


Asunto(s)
Interleucina-11/metabolismo , Fibrosis Pulmonar , Sirtuina 1/metabolismo , Deficiencia de Vitamina D , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa , Animales , Fibrosis , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/efectos adversos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Sirtuina 1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Vitamina D , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/genética
17.
Cell Death Discov ; 7(1): 102, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980809

RESUMEN

The abnormal activation of Wnt/ß-catenin signaling plays a critical role in the development of lung cancer, which is also important in the generation and maintenance of lung cancer stem cell (CSC). CSCs have unique capabilities to resist anticancer therapy, seed recurrent tumors, and disseminate to and colonize distant tissues. Apatinib, a small-molecule VEGFR2-tyrosine kinase inhibitor, shows highly efficient antitumor activity in heavily treated, chemoresistant, and metastatic lung cancer. We speculated that inhibition of Wnt/ß-catenin signaling and targeting lung CSCs could be one of the anti-tumor mechanisms of apatinib. In the present study we demonstrated that apatinib repressed lung CSC-like traits by hindering sphere formation ability, lung CSC-related marker expression and decreasing chemoresistance derived stemness. Mechanistically, apatinib exerted its anti-CSC effects by inhibiting ß-catenin and its downstream targets. Moreover, apatinib induced the production of reactive oxyen species (ROS), which participated in the inhibitory effects of apatinib on lung CSCs. It was found that ß-catenin regulated apatinib-induced production of ROS. Inhibition or promotion of ROS production with N-acetyl-L-cysteine or H2O2 not only upregulated or downregulated ß-catenin expression, but also prevented or promoted DNA damage, rescued or impeded sphere formation, respectively. Collectively, our findings reveal that apatinib directly inhibits ß-catenin signaling and promotes ROS generation to suppress lung CSC-like characteristics. A clearer understanding of the anti-cancer mechanisms of apatinib is required for its better application in combating advanced and refractory/recurrent lung cancer when combined with conventional chemotherapy.

18.
Front Cell Dev Biol ; 9: 671564, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712655

RESUMEN

This study aimed to determine whether Bmi-1 deficiency leads to intestinal epithelial barrier destruction and microbiota dysfunction, which members of the microbial community alter barrier function with age, and whether p16 INK4a deletion could reverse the damage of intestinal epithelial barrier and microbial dysbiosis. Intestines from Bmi-1-deficient (Bmi-1-/- ), Bmi-1 and p16 INK4a double-knockout (Bmi-1-/-p16 INK4a-/- ), and wild-type mice were observed for aging and inflammation. Duolink Proximity Ligation Assay, immunoprecipitation, and construction of p16 INK4a overexpressed adenovirus and the overexpressed plasmids of full-length, mutant, or truncated fragments for occludin were used for analyzing the interaction between p16 INK4a and occludin. High-throughput sequencing of V4 region amplicon of 16S ribosomal RNA was conducted using intestinal microbiota. We found Bmi-1 deficiency destructed barrier structure, barrier function, and tight junction (TJ) in intestinal epithelium; decreased the TJ proteins; increased tumor necrosis factor α (TNF-α)-dependent barrier permeability; and up-regulated proinflammatory level of macrophages induced by intestinal microbial dysbiosis. The transplantation of fecal microbiota from wild-type mice ameliorated TJ in intestinal epithelium of Bmi-1-/- and Bmi-1-/-p16 INK4a-/- mice. Harmful bacteria including Desulfovibrio, Helicobacter, and Oscillibacter were at a higher level in Bmi-1-/- mice. More harmful bacteria Desulfovibrio entered the epithelium and promoted macrophages-secreted TNF-α and caused TNF-α-dependent barrier permeability and aging. Accumulated p16 INK4a combined with occludin at the 1st-160th residue in cytoplasm of intestinal epithelium cells from Bmi-1-/- mice, which blocked formation of TJ and the repair of intestinal epithelium barrier. P16 INK4a deletion could maintain barrier function and microbiota balance in Bmi-1-/- mice through strengthening formation of TJ and decreasing macrophages-secreted TNF-α induced by Desulfovibrio entering the intestinal epithelium. Thus, Bmi-1 maintained intestinal TJ, epithelial barrier function, and microbiota balance through preventing senescence characterized by p16 INK4a accumulation. The clearance of p16 INK4a -positive cells in aging intestinal epithelium would be a new method for maintaining barrier function and microbiota balance. The residues 1-160 of occludin could be a novel therapeutic target for identifying small molecular antagonistic peptides to prevent the combination of p16 INK4a with occludin for protecting TJ.

19.
J Int Med Res ; 48(9): 300060520957453, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32972276

RESUMEN

OBJECTIVES: This study aimed to assess computed tomographic (CT) features of the normal pancreatic uncinate process (UP) and to classify UP types on the basis of morphological characteristics. METHODS: From November 2017 to December 2018, consecutive Han Chinese adults were enrolled in this retrospective study. Morphometric evaluation of the UP was performed using CT imaging, including assessment of the maximal transverse diameter of the UP (MTDUP) and pancreas head, and assessment of the relationship between the UP and superior mesenteric vessels. RESULTS: A total of 318 participants were studied. The mean MTDUP and maximal transverse diameter of the pancreas head were 15.89 ± 4.82 mm and 46.47 ± 7.18 mm, respectively. The mean MTDUP was 10.83 ± 2.59 mm for type I UP (21.70% of participants), 13.87 ± 2.35 mm for type II (13.21%), 17.08 ± 3.43 mm for type III (56.29%), and 23.74 ± 5.02 mm for type IV (8.81%). There was a significant difference among the UP types. CONCLUSIONS: Four types of normal UP can be defined on the basis of morphological CT features. The length of the UP significantly increases from types I to IV, and type III accounts for > 50%.


Asunto(s)
Neoplasias Pancreáticas , Adulto , Humanos , Páncreas/diagnóstico por imagen , Páncreas/cirugía , Neoplasias Pancreáticas/cirugía , Pancreaticoduodenectomía , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
20.
J Hazard Mater ; 394: 122549, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32283380

RESUMEN

Bisphenol S is considered as a safer alternative to bisphenol A. In the present study, we used murine macrophages to investigate the effects of BPS exposure on oxidative stress and inflammatory response as well as the underlying mechanism. Cells were exposed to BPS at various concentrations for short period of times. Results showed that 10-8 M BPS triggered oxidative stress by increasing ROS/RNS production, increased the levels of oxidant enzyme NOX1/2, and decreased the levels of antioxidant enzymes SOD1/2, CAT and GSH-Px. 10-8 M BPS exposure significantly induced the production of proinflammatory mediators. Activation of the NLRP3 inflammasome, TLR4, and MAPK pathways was involved in this process. Furthermore, we illustrated that NAC pretreatment diminished these effects triggered by BPS exposure. Collectively, our data suggested that BPS at a dose relevant to human serum concentration induced oxidative stress and inflammatory response in macrophages. These novel findings shed light on the concerns regarding the potential adverse effects of BPS exposure that requires further careful attention.


Asunto(s)
Inflamasomas/efectos de los fármacos , Inflamación/inducido químicamente , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fenoles/toxicidad , Sulfonas/toxicidad , Acetilcisteína/farmacología , Animales , Antiinflamatorios/farmacología , Supervivencia Celular/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA