Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 184, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289384

RESUMEN

Transaminase (TA) is a crucial biocatalyst for enantioselective production of the herbicide L-phosphinothricin (L-PPT). The use of enzymatic cascades has been shown to effectively overcome the unfavorable thermodynamic equilibrium of TA-catalyzed transamination reaction, also increasing demand for TA stability. In this work, a novel thermostable transaminase (PtTA) from Pseudomonas thermotolerans was mined and characterized. The PtTA showed a high specific activity (28.63 U/mg) towards 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), with excellent thermostability and substrate tolerance. Two cascade systems driven by PtTA were developed for L-PPT biosynthesis, including asymmetric synthesis of L-PPT from PPO and deracemization of D, L-PPT. For the asymmetric synthesis of L-PPT from PPO, a three-enzyme cascade was constructed as a recombinant Escherichia coli (E. coli G), by co-expressing PtTA, glutamate dehydrogenase (GluDH) and D-glucose dehydrogenase (GDH). Complete conversion of 400 mM PPO was achieved using only 40 mM amino donor L-glutamate. Furthermore, by coupling D-amino acid aminotransferase (Ym DAAT) from Bacillus sp. YM-1 and PtTA, a two-transaminase cascade was developed for the one-pot deracemization of D, L-PPT. Under the highest reported substrate concentration (800 mM D, L-PPT), a 90.43% L-PPT yield was realized. The superior catalytic performance of the PtTA-driven cascade demonstrated that the thermodynamic limitation was overcome, highlighting its application prospect for L-PPT biosynthesis. KEY POINTS: • A novel thermostable transaminase was mined for L-phosphinothricin biosynthesis. • The asymmetric synthesis of L-phosphinothricin was achieved via a three-enzyme cascade. • Development of a two-transaminase cascade for D, L-phosphinothricin deracemization.


Asunto(s)
Aminobutiratos , Escherichia coli , Transaminasas , Transaminasas/genética , Escherichia coli/genética , Ácido Butírico , Glucosa 1-Deshidrogenasa , Ácido Glutámico
2.
Bioprocess Biosyst Eng ; 47(6): 841-850, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676737

RESUMEN

D-Allulose 3-epimerase (DAE) is a vital biocatalyst for the industrial synthesis of D-allulose, an ultra-low calorie rare sugar. However, limited thermostability of DAEs hinders their use at high-temperature production. In this research, hyperthermophilic TI-DAE (Tm = 98.4 ± 0.7 ℃) from Thermotoga sp. was identified via in silico screening. A comparative study of the structure and function of site-directed saturation mutagenesis mutants pinpointed the residue I100 as pivotal in maintaining the high-temperature activity and thermostability of TI-DAE. Employing TI-DAE as a biocatalyst, D-allulose was produced from D-fructose with a conversion rate of 32.5%. Moreover, TI-DAE demonstrated excellent catalytic synergy with glucose isomerase CAGI, enabling the one-step conversion of D-glucose to D-allulose with a conversion rate of 21.6%. This study offers a promising resource for the enzyme engineering of DAEs and a high-performance biocatalyst for industrial D-allulose production.


Asunto(s)
Thermotoga , Thermotoga/enzimología , Thermotoga/genética , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/biosíntesis , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Racemasas y Epimerasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/biosíntesis , Fructosa/metabolismo , Fructosa/biosíntesis , Fructosa/química , Estabilidad de Enzimas , Biocatálisis , Mutagénesis Sitio-Dirigida , Calor
3.
Biotechnol Bioeng ; 120(10): 2940-2952, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37227020

RESUMEN

2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) is the essential precursor keto acid for the asymmetric biosynthesis of herbicide l-phosphinothricin (l-PPT). Developing a biocatalytic cascade for PPO production with high efficiency and low cost is highly desired. Herein, a d-amino acid aminotransferase from Bacillus sp. YM-1 (Ym DAAT) with high activity (48.95 U/mg) and affinity (Km = 27.49 mM) toward d-PPT was evaluated. To circumvent the inhibition of by-product d-glutamate (d-Glu), an amino acceptor (α-ketoglutarate) regeneration cascade was constructed as a recombinant Escherichia coli (E. coli D), by coupling Ym d-AAT, d-aspartate oxidase from Thermomyces dupontii (TdDDO) and catalase from Geobacillus sp. CHB1. Moreover, the regulation of the ribosome binding site was employed to overcome the limiting step of expression toxic protein TdDDO in E. coli BL21(DE3). The aminotransferase-driven whole-cell biocatalytic cascade (E. coli D) showed superior catalytic efficiency for the synthesis of PPO from d,l-phosphinothricin (d,l-PPT). It revealed the production of PPO exhibited high space-time yield (2.59 g L-1 h-1 ) with complete conversion of d-PPT to PPO at high substrate concentration (600 mM d,l-PPT) in 1.5 L reaction system. This study first provides the synthesis of PPO from d,l-PPT employing an aminotransferase-driven biocatalytic cascade.


Asunto(s)
Escherichia coli , Transaminasas , Transaminasas/genética , Transaminasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminobutiratos/metabolismo , Aminoácidos/metabolismo
4.
Bioprocess Biosyst Eng ; 46(9): 1279-1291, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37450268

RESUMEN

Cellobiose 2-epimerase (CE) is ideally suited to synthesize lactulose from lactose, but the poor thermostability and catalytic efficiency restrict enzymatic application. Herein, a non-characterized CE originating from Caldicellulosiruptor morganii (CmCE) was discovered in the NCBI database. Then, a smart mutation library was constructed based on FoldX ΔΔG calculation and modeling structure analysis, from which a positive mutant D226G located within the α8/α9 loop exhibited longer half-lives at 65-75 °C as well as lower Km and higher kcat/Km values compared with CmCE. Molecular modeling demonstrated that the improvement of D226G was largely attributed to the rigidification of the flexible loop, the compactness of the catalysis pocket and the increment of substrate-binding capability. Finally, the yield of synthesizing lactulose catalyzed by D226G reached 45.5%, higher than the 35.9% achieved with CmCE. The disclosed effect of the flexible loop on enzymatic stability and catalysis provides insight to redesign efficient CEs to biosynthesize lactulose.


Asunto(s)
Lactosa , Lactulosa , Lactulosa/química , Lactosa/química , Celobiosa/química , Racemasas y Epimerasas/genética , Clostridiales , Diseño Asistido por Computadora
5.
Appl Environ Microbiol ; 88(9): e0006222, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35465694

RESUMEN

d-Alanine belongs to nonessential amino acids that have diverse applications in the fields of food and health care. (R)-transaminase [(R)-TA]-catalyzed asymmetric amination of pyruvate is a feasible alternative for the synthesis of d-alanine, but low catalytic efficiency and thermostability limit enzymatic utilization. In this work, several potential (R)-TAs were discovered using NCBI database mining synchronously with enzymatic structure-function analysis, among which Capronia epimyces TA (CeTA) showed the highest activity for amination of pyruvate using (R)-α-methylbenzylamine as the donor. Furthermore, enzymatic residues surrounding a large catalysis pocket were subjected to saturation and combinatorial mutagenesis, and positive mutant F113T showed dramatic improvement in activity and thermostability. Molecular modeling indicated that the substitution of phenylalanine with threonine afforded alleviation of steric hindrance in the pocket and induced formation of additional hydrogen bonds with neighboring residues. Finally, using recombinant cells containing F113T as a biocatalyst, the conversion yield of amination of 100 mM pyruvate to d-alanine achieved up to 95.2%, which seemed to be the highest level in the literature regarding synthesis of d-alanine using TAs. The inherent characteristics rendered CeTA F113T a promising platform for efficient preparation of d-alanine operating with high productivity. IMPORTANCE d-Alanine is an important compound with many valuable applications. Its asymmetric synthesis employing (R)-ω-TA is considered an attractive choice. According to the stereoselectivity, ω-TAs have either (R)- or (S)-enantiopreference. There has been a variety of literature regarding screening, characterizing, and molecular modification of (S)-ω-TAs; in contrast, the research about (R)-ω-TA has lagged behind. In this work, we identify several (R)-ω-TAs and succeeded in creating mutant F113T, which showed not only better efficiency toward pyruvate but also higher thermostability compared with the original enzyme. The obtained original enzymes and positive mutants displayed important application value for pushing symmetric synthesis of d-alanine to a higher level.


Asunto(s)
Alanina , Transaminasas , Alanina/metabolismo , Aminoácidos , Ascomicetos , Dominio Catalítico , Ácido Pirúvico/metabolismo , Transaminasas/metabolismo
6.
Proteins ; 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33749895

RESUMEN

Nitrile hydratase (NHase), an excellent bio-catalyst for the synthesis of amide compounds, was composed of two heterologous subunits. A thermoalkaliphilic NHase NHCTA1 (Tm = 71.3°C) obtained by in silico screening in our study exhibited high flexibility of α-subunit but excellent thermostability, as opposed to previous examples. To gain a deeper structural insight into the thermostability of NHCTA1, comparative molecular dynamics simulation of NHCTA1 and reported NHases was carried out. By comparison, we speculated that ß-subunit played a key role in adjusting the flexibility of α-subunit and the different conformations of linker in "α5-helix-coil ring" supersecondary structure of ß-subunit can affect the interaction between ß-subunit and α-subunit. Mutant NHCTA1-α6 C with a random coil linker and mutant NHCTA1-αßγ with a truncated linker were therefore constructed to understand the impact on NHCTA1 thermostability by varying the supersecondary structure. The varied thermostability of NHCTA1-α6 C and NHCTA1-αßγ (Tmα6C = 74.4°C, Tmαßγ = 65.6°C) verified that the flexibility of α-subunit adjusted by ß-subunit was relevant to the stability of NHCTA1. This study gained an insight into the NNHCTA1 thermostability by virtual dynamics comparison and experimental studies without crystallization, and this approach could be applied to other industrial-important enzymes.

7.
Chembiochem ; 22(2): 345-348, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32815302

RESUMEN

A single-transaminase-catalyzed biocatalytic cascade was developed by employing the desired biocatalyst, ATA-117-Rd11, that showed high activity toward 2-oxo-4-[(hydroxy)(methyl)phosphinoyl] butyric acid (PPO) and α-ketoglutarate, and low activity against pyruvate. The cascade successfully promotes a highly asymmetric amination reaction for the synthesis of l-phosphinothricin (l-PPT) with high conversion (>95 %) and>99 % ee. In a scale-up experiment, using 10 kg pre-frozen E. coli cells harboring ATA-117-Rd11 as catalyst, 80 kg PPO was converted to ≈70 kg l-PPT after 24 hours with a high ee value (>99 %).


Asunto(s)
Aminobutiratos/metabolismo , Transaminasas/metabolismo , Aminobutiratos/química , Biocatálisis , Estructura Molecular
8.
Bioprocess Biosyst Eng ; 44(8): 1781-1792, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33830378

RESUMEN

To improve the operational stability of glucose isomerase in E. coli TEGI-W139F/V186T, the immobilized cells were prepared with modified diatomite as a carrier and 74.1% activity of free cells was recovered after immobilization. Results showed that the immobilized cells still retained 86.2% of the initial transformational activity after intermittent reused 40 cycles and the yield of D-fructose reached above 42% yield at 60 °C. Moreover, the immobilized cells were employed in the continuous production of High Fructose Corn Syrup (HFCS) in a recirculating packed bed reactor for 603 h at a constant flow rate. It showed that the immobilized cells exhibited good operational stability and the yield of D-fructose retained above 42% within 603 h. The space-time yield of high fructose corn syrup reached 3.84 kg L-1 day-1. The investigation provided an efficient immobilization method for recombinant cells expressing glucose isomerase with higher stability, and the immobilized cells are a promising biocatalyst for HFCS production.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Tierra de Diatomeas/química , Escherichia coli/metabolismo , Jarabe de Maíz Alto en Fructosa/química , Proteínas Recombinantes/química , Proteínas Bacterianas , Reactores Biológicos , Cobalto/química , Enzimas Inmovilizadas , Fructosa/química , Glucosa , Concentración de Iones de Hidrógeno , Iones , Magnesio/química , Microscopía Electrónica de Rastreo , Temperatura
9.
BMC Genomics ; 21(1): 886, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33308160

RESUMEN

BACKGROUND: Ophiocordyceps sinensis is an important traditional Chinese medicine for its comprehensive active ingredients, such as cordycepin, cordycepic acid, and Cordyceps polysaccharide. O. sinensis zjut, a special strain isolated from O. sinensis, has similar pharmacological functions to wild O. sinensis. Currently, O. sinensis with artificial cultivation has been widely studied, but systematic fundamental research at protein levels has not been determined. RESULTS: Proteomes of O. sinensis zjut at different culture periods (growth period, 3rd day; pre-stable period, 6th day; and stable period, 9th day) were relatively quantified by relative isotope markers and absolute quantitative technology. In total, 4005 proteins were obtained and further annotated with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes database. Based on the result of the annotations, metabolic pathways of active ingredients, amino acids and fatty acid were constructed, and the related enzymes were exhibited. Subsequently, comparative proteomics of O. sinensis zjut identified the differentially expressed proteins (DEPs) by growth in different culture periods, to find the important proteins involved in metabolic pathways of active ingredients. 605 DEPs between 6d-VS-3d, 1188 DEPs between 9d-VS-3d, and 428 DEPs between 9d-VS-6d were obtained, respectively. CONCLUSION: This work provided scientific basis to study protein profile and comparison of protein expression levels of O. sinensis zjut, and it will be helpful for metabolic engineering works to active ingredients for exploration, application and improvement of this fungus.


Asunto(s)
Cordyceps , Cordyceps/genética , Ontología de Genes , Medicina Tradicional China , Redes y Vías Metabólicas , Proteoma/genética
10.
Biotechnol Lett ; 42(11): 2357-2366, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32638189

RESUMEN

OBJECTIVE: To explore the optimal methods for the protoplast preparation and regeneration of Hirsutella sinensis by optimizing the limiting factors. RESULTS: During the treatment of enzymatic protoplast preparation, mycelium cultured for 7 days was the optimal start material. The maximum protoplast preparation rate of 4.3 × 107 protoplasts/g fresh weight (FW) was obtained after 0.5 h treatment of 1 mg/ml mixed lytic enzymes in KH2PO4-K2HPO4 buffer (pH 5.5) with 0.6 M KCl at 18 °C. As for the protoplast regeneration, the maximum protoplast regeneration rate reached 12.32% through 5 × 103 protoplasts mL-1 cultivated for 20 days in the regeneration medium with 0.6 M mannitol and 1.5% agar. CONCLUSIONS: The preparation and regeneration of H. sinensis protoplasts was firstly established based on process optimization and it provided a foundation for the study of H. sinensis mutagenesis.


Asunto(s)
Protoplastos/fisiología , Saccharomycetales/crecimiento & desarrollo , Medios de Cultivo , Micelio/crecimiento & desarrollo , Regeneración , Saccharomycetales/citología
11.
Bioprocess Biosyst Eng ; 43(9): 1599-1607, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32333194

RESUMEN

Transaminase responsible for alienating prochiral ketone compound is applicable to asymmetric synthesis of herbicide L-phosphinothricin (L-PPT). In this work, the covalent immobilization of recombinant transaminase from Citrobacter koseri (CkTA) was investigated on different epoxy resins. Using optimum ES-105 support, a higher immobilized activity was obtained via optimizing immobilization process in terms of enzyme loading, coupling time and initial PLP concentration. Crucially, due to blocking unreacted epoxy groups on support surface with amino acids, the reaction temperature of blocked immobilized biocatalyst was enhanced from 37 to 57 °C. Its thermostability at 57 °C was also found to be superior to that of free CkTA. The Km value was shifted from 36.75 mM of free CkTA to 39.87 mM of blocked immobilized biocatalyst, demonstrating that the affinity of enzyme to the substrate has not been apparently altered. Accordingly, the biocatalyst performed the consecutive synthesis of L-PPT for 11 cycles (yields>91%) with retaining more than 91.13% of the initial activity. The seemingly the highest reusability demonstrates this biocatalyst has prospective for reducing the costs of consecutive synthesis of L-PPT with high conversion.


Asunto(s)
Aminobutiratos/síntesis química , Proteínas Bacterianas/química , Citrobacter koseri/enzimología , Enzimas Inmovilizadas/química , Resinas Epoxi/química , Transaminasas/química , Proteínas Bacterianas/genética , Citrobacter koseri/genética , Enzimas Inmovilizadas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transaminasas/genética
12.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578259

RESUMEN

2-Chloronicotinic acid is a key intermediate of pharmaceuticals and pesticides. Amidase-catalyzed hydrolysis provides a promising enzymatic method for 2-chloronicotinic acid production from 2-chloronicotinamide. However, biocatalytic hydrolysis of 2-chloronicotinamide is difficult due to the strong steric and electronic effect caused by 2-position chlorine substituent of the pyridine ring. In this study, an amidase from a Pantoea sp. (Pa-Ami) was designed and engineered to have improved catalytic properties. Single mutant G175A and double mutant G175A/A305T strains exhibited 3.2- and 3.7-fold improvements in their specific activity for 2-chloronicotinamide, and the catalytic efficiency was significantly increased, with kcat/Km values 3.1 and 10.0 times higher than that of the wild type, respectively. Structure-function analysis revealed that the distance between Oγ of Ser177 (involved in the catalytic triad) and the carbonyl carbon of 2-chloronicotinamide was shortened in the G175A mutant, making the nucleophilic attack on the Oγ of Ser177 easier by virtue of proper orientation. In addition, the A305T mutation contributed to a suitable tunnel formation to facilitate the substrate entry and product release, resulting in improved catalytic efficiency. With the G175A/A305T double mutant as a biocatalyst, a maximum of 1,220 mM 2-chloronicotinic acid was produced with a 94% conversion, and the space-time yield reached as high as 575 gproduct liter-1 day-1 These results provide not only a novel robust biocatalyst for the production of 2-chloronicotinic acid but also new insights into amidase structure-function relationships.IMPORTANCE In recent years, the demand for 2-chloronicotinic acid has been greatly increased. To date, several chemical methods have been used for the synthesis of 2-chloronicotinic acid, but all include tedious steps and/or drastic reaction conditions, resulting in both economic and environmental issues. It is requisite to develop an efficient and green synthesis route. We recently screened Pa-Ami and demonstrated its potential for synthesis of 2-chloronicotinic acid from 2-chloronicotinamide. However, chlorine substitution on the pyridine ring of nicotinamide significantly affected the activity of Pa-Ami. Especially for 2-chloronicotinamide, the enzyme activity and catalytic efficiency were relatively low. In this study, based on structure-function analysis, we succeeded in engineering the amidase by structure-guided saturation mutagenesis. The engineered Pa-Ami exhibited quite high catalytic activity toward 2-chloronicotinamide and could serve as a promising biocatalyst for the biosynthesis of 2-chloronicotinic acid.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Niacinamida/análogos & derivados , Niacinamida/biosíntesis , Pantoea/enzimología , Ingeniería de Proteínas , Amidohidrolasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biotransformación , Catálisis , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutación
13.
Appl Microbiol Biotechnol ; 103(21-22): 8725-8736, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31630238

RESUMEN

Promoter engineering is an enabling technology in metabolic engineering and synthetic biology. As an indispensable part of synthetic biology, the promoter is a key factor in regulating genetic circuits and in coordinating multi-gene biosynthetic pathways. In this review, we summarized the recent progresses in promoter engineering in microbes. Specifically, the endogenous promoters are firstly discussed, followed by the statement of the influence of nucleotides exchange on the strength of promoters explored by site-selective mutagenesis. We then introduced the promoter libraries with a wide range of strength, which are constructed focusing on core promoter regions and upstream activating sequences by rational designs. Finally, the application of promoter libraries in the optimization of multi-gene metabolic pathways for high-yield production of metabolites was illustrated with a couple of recent examples.


Asunto(s)
Reactores Biológicos/microbiología , Regulación Bacteriana de la Expresión Génica/genética , Ingeniería Metabólica/métodos , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética , Bacterias/genética , Técnicas Biosensibles/métodos , Vías Biosintéticas/genética , Biología Sintética/métodos , Levaduras/genética
14.
Bioorg Chem ; 76: 81-87, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29153589

RESUMEN

2-Chloronicotinic acid (2-CA) is an important building block for a series of agrochemicals and pharmaceuticals. Amidase-catalyzed hydrolysis of 2-chloronicotinamide is one of the most attractive approaches for 2-CA production. However, development of the bioprocess was plagued by low activity of amidase for 2-chloronicotinamide. In this work, an amidase signature (AS) family amidase from Pantoea sp. (Pa-Ami), with superior activity for nicotinamide and its chlorinated derivatives, was exploited and characterized. Kinetic analysis and molecular docking clearly indicated that chlorine substitution in the pyridine ring of nicotinamide, especially the substitution at 2-position led to a dramatic decrease of Pa-Ami activity. The productivity of the bioprocess was significantly improved using fed-batch mode at low reaction temperature and 2-CA was produced as high as 370 mM with a substrate conversion of 94.2%. These results imply that Pa-Ami is potentially promising biocatalyst for industrial production of 2-CA.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Niacinamida/análogos & derivados , Ácidos Nicotínicos/síntesis química , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Biocatálisis , Dominio Catalítico , Técnicas de Química Sintética , Pruebas de Enzimas , Hidrólisis , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Niacinamida/química , Pantoea/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
15.
Bioprocess Biosyst Eng ; 41(1): 57-64, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28965246

RESUMEN

The acid-catalyzed treatment was a conventional process for xylose production from corncob. To increase the release of xylose and to reduce the by-products formation and water usage, the oxalic acid was used as catalyst to hydrolyze the corncob and the hydrolytic conditions were investigated. The highest xylose yield of 32.7 g L-1, representing 96.1% of total theoretical xylose yield, was obtained using 1.2% oxalic acid after hydrolysis for 120 min at 130 °C, which was more than 10% higher than that of sulfuric acid-catalyzed hydrolysis. Mixed acids-catalyzed hydrolysis performed a synergistic effect for xylose production and 31.7 g L-1 of xylose was reached after reacting for 90 min with oxalic acid and sulfuric acid at a ratio of 1:4 (w/w). A kinetic model was developed to elucidate the competitive reaction between xylose formation and its degradation in the hydrolysis process, and the experimental data obtained in this study were perfectly in agreement with that of predicted from the model. Furthermore, the final xylose yield of 85% was achieved after purification and crystallization. It was demonstrated that xylose production from the corncob hydrolysis with oxalic acid as the catalyst was an effective alternative to the traditional sulfuric acid-based hydrolysis.


Asunto(s)
Ácido Oxálico/química , Xilosa/química , Zea mays/química , Catálisis , Hidrólisis
16.
Biotechnol Bioeng ; 114(4): 843-851, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27723097

RESUMEN

L-methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over-expression of homoserine O-succinyltransferase MetA together with efflux transporter YjeH, resulting in L-methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L-methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L-ethionine concentration and accumulated L-methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5-fold increase in L-methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2 S2 O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L-methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L-methionine. Biotechnol. Bioeng. 2017;114: 843-851. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Metionina/metabolismo , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos/microbiología , Clonación Molecular , Escherichia coli/genética , Fermentación , Técnicas de Inactivación de Genes , Lisina/metabolismo , Redes y Vías Metabólicas , Metionina/análisis , Plásmidos/genética , Treonina/metabolismo
17.
J Ind Microbiol Biotechnol ; 43(5): 585-93, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26886758

RESUMEN

In this paper, a simple and effective method using sodium metasilicate as precursor and amine as additive was first reported to immobilize recombinant nitrilase, for efficient production of 2-hydroxy-4-(methylthio) butanoic acid from 2-hydroxy-4-(methylthio) butanenitrile. High immobilization recovery of enzyme activity (above 90 %) was achieved. The immobilized enzyme displayed better thermal stability, pH stability and shelf life compared to free nitrilase. Moreover, it showed excellent reusability and could be recycled up to 16 batches without significant loss in activity. 200 mM 2-hydroxy-4-(methylthio) butanenitrile was completely converted by the immobilized enzyme within 30 min, and the accumulation amount of 2-hydroxy-4-(methylthio) butanoic acid reached 130 mmol/g of immobilized beads after 16 batches. These encouraging results demonstrated the efficiency of the new technology for nitrilase immobilization, which has great potential in preparation of 2-hydroxy-4-(methylthio) butanoic acid.


Asunto(s)
Aminohidrolasas/metabolismo , Butiratos/metabolismo , Enzimas Inmovilizadas/metabolismo , Nitrilos/metabolismo , Dióxido de Silicio/química , Biocatálisis , Estabilidad de Enzimas , Equipo Reutilizado , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/metabolismo , Temperatura
18.
J Ind Microbiol Biotechnol ; 42(8): 1091-103, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26077737

RESUMEN

High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Jarabe de Maíz Alto en Fructosa/química , Thermoanaerobacter/enzimología , Isomerasas Aldosa-Cetosa/genética , Dominio Catalítico , Clonación Molecular , Bases de Datos Genéticas , Escherichia coli/metabolismo , Fructosa/química , Glucosa/química , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Recombinantes/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Sacarosa/química , Edulcorantes/química , Thermoanaerobacter/genética
19.
J Ind Microbiol Biotechnol ; 41(10): 1479-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25085741

RESUMEN

Methionine as an essential amino acid has been attracting more attention for its important applications in food and feed additives. In this study, for efficient production of methionine from 2-amino-4-methylthiobutanenitrile, a codon-optimized nitrilase gene was newly synthesized and expressed, and the catalytic conditions for methionine production were studied. The optimal temperature and pH for methionine synthesis were 40 °C and 7.5, respectively. The recombinant nitrilase was thermo-stable with half-life of 5.52 h at 40 °C. The substrate loading was optimized in given amount of catalyst and fixed substrate/catalyst ratio mode to achieve higher productivity. Methionine was produced in 100 % conversion within 120 min with a substrate loading of 300 mM. The production of methionine with the immobilized resting cells in packed-bed reactor was investigated. The immobilized nitrilase exhibited good operation stability and retained over 80 % of the initial activity after operating for 100 h. After separation, the purity and the total yield of methionine reached 99.1 and 97 %, respectively. This recombinant nitrilase could be a potential candidate for application in production of methionine.


Asunto(s)
Aminohidrolasas/química , Proteínas Bacterianas/química , Escherichia coli/genética , Metionina/síntesis química , Nitrilos/química , Aminohidrolasas/genética , Aminohidrolasas/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Biocatálisis , Células Inmovilizadas , Comamonadaceae/enzimología , Estabilidad de Enzimas , Semivida , Concentración de Iones de Hidrógeno , Metales/química , Metionina/biosíntesis , Nitrilos/metabolismo
20.
Bioresour Technol ; 395: 130391, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307483

RESUMEN

In response to the persistent expansion of global resource demands, considerable attention has been directed toward the synthetic microbial consortia (SMC) within the domain of microbial engineering, aiming to address the sustainable management and valorization of biomass wastes. This comprehensive review systematically encapsulates the most recent advancements in research and technological applications concerning the utilization of SMC for biomass waste treatment. The construction strategies of SMC are briefly outlined, and the diverse applications of SMC in biomass wastes treatment are explored, with particular emphasis on its potential advantages in waste degradation, hazardous substances control, and high value-added products conversion. Finally, recommendations for the future development of SMC technology are proposed, and prospects for its sustainable application are discussed.


Asunto(s)
Consorcios Microbianos , Tecnología , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA