Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Alzheimer Dis Assoc Disord ; 37(1): 66-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36413637

RESUMEN

OBJECTIVE: To determine the minimum duration of electroencephalography (EEG) data necessary to differentiate EEG features of Lewy body dementia (LBD), that is, dementia with Lewy bodies and Parkinson disease dementia, from non-LBD patients, that is, Alzheimer disease and Parkinson disease. METHODS: We performed quantitative EEG analysis for 16 LBD and 14 non-LBD patients. After artifact removal, a fast Fourier transform was performed on 90, 60, and thirty 2-second epochs to derive dominant frequency; dominant frequency variability; and dominant frequency prevalence. RESULTS: In LBD patients, there were no significant differences in EEG features derived from 90, 60, and thirty 2-second epochs (all P >0.05). There were no significant differences in EEG features derived from 3 different groups of thirty 2-second epochs (all P >0.05). When analyzing EEG features derived from ninety 2-second epochs, we found that LBD had significantly reduced dominant frequency, reduced dominant frequency variability, and reduced dominant frequency prevalence alpha compared with the non-LBD group (all P <0.05). These same differences were observed between the LBD and non-LBD groups when analyzing thirty 2-second epochs. CONCLUSIONS: There were no differences in EEG features derived from 1 minute versus 3 minutes of EEG data, and both durations of EEG data equally differentiated LBD from non-LBD.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , Electroencefalografía
2.
Nat Neurosci ; 25(11): 1543-1558, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36303068

RESUMEN

Precisely controlled development of the somatosensory system is essential for detecting pain, itch, temperature, mechanical touch and body position. To investigate the protein-level changes that occur during somatosensory development, we performed single-cell mass cytometry on dorsal root ganglia from C57/BL6 mice of both sexes, with litter replicates collected daily from embryonic day 11.5 to postnatal day 4. Measuring nearly 3 million cells, we quantified 30 molecularly distinct somatosensory glial and 41 distinct neuronal states across all timepoints. Analysis of differentiation trajectories revealed rare cells that co-express two or more Trk receptors and over-express stem cell markers, suggesting that these neurotrophic factor receptors play a role in cell fate specification. Comparison to previous RNA-based studies identified substantial differences between many protein-mRNA pairs, demonstrating the importance of protein-level measurements to identify functional cell states. Overall, this study demonstrates that mass cytometry is a high-throughput, scalable platform to rapidly phenotype somatosensory tissues.


Asunto(s)
Ganglios Espinales , Neuronas , Masculino , Femenino , Ratones , Animales , Ganglios Espinales/fisiología , Neuronas/fisiología , Neuroglía , Diferenciación Celular , ARN Mensajero/genética
3.
Dev Neurobiol ; 78(7): 701-717, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29569362

RESUMEN

The peripheral somatosensory system overproduces neurons early in development followed by a period of cell death during final target innervation. The decision to survive or die in somatosensory neurons of the dorsal root ganglion (DRG) is mediated by target-derived neurotrophic factors and their cognate receptors. Subsets of peripheral somatosensory neurons can be crudely defined by the neurotrophic receptors that they express: peptidergic nociceptors (TrkA+), nonpeptidergic nociceptors (Ret+), mechanoreceptors (Ret+ or TrkB+), and proprioceptors (TrkC+). A direct comparison of early developmental timing between these subsets has not been performed. Here we characterized the accumulation and death of TrkA, B, C, and Ret+ neurons in the DRG as a function of developmental time. We find that TrkB, TrkC, and Ret-expressing neurons in the DRG complete developmental cell death prior to TrkA-expressing neurons. Given the broadly defined roles of the neurotrophin receptor p75NTR in augmenting neurotrophic signaling in sensory neurons, we investigated its role in supporting the survival of these distinct subpopulations. We find that TrkA+, TrkB+, and TrkC+ sensory neuron subpopulations require p75NTR for survival, but proliferating progenitors do not. These data demonstrate how diverging sensory neurons undergo successive waves of cell death and how p75NTR represses the magnitude, but not developmental window of this culling. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 701-717, 2018.


Asunto(s)
Ganglios Espinales/embriología , Ganglios Espinales/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Recuento de Células , Muerte Celular/fisiología , Supervivencia Celular/fisiología , Ganglios Espinales/citología , Regulación del Desarrollo de la Expresión Génica , Vértebras Lumbares , Glicoproteínas de Membrana/metabolismo , Ratones Noqueados , Oligodendroglía/citología , Oligodendroglía/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptor trkA/metabolismo , Receptor trkC/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Células Receptoras Sensoriales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA