Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 21(3): 1077-1089, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38346386

RESUMEN

Folic acid (FA) has been widely engineered to promote the targeted delivery of FA-modified nanoparticles (NPs) by recognizing the folate receptor α (FRα). However, the efficacy of FA-targeted therapy significantly varied with the abundance of FRα and natural immunoglobulin levels in different tumors. Therefore, a sequential therapy of dexamethasone (Dex)-induced FRα amplification and immunosuppression combined with FA-functionalized doxorubicin (DOX) micelles to synergistically suppress tumor proliferation was proposed in this study. In brief, a pH/reduction-responsive FA-functionalized micelle (FCSD) was obtained by grafting FA, derivatization-modified cholesterol, and 2,3-dimethylmaleic anhydride onto a chitosan oligosaccharide. The obtained FCSD/DOX NPs can effectively deliver DOX in tumors, and their targeting efficiency can be further improved with Dex pretreatment to decrease the immunoglobulin M (IgM) content in serum and amplify FRα levels on the surface of M109 cells. After internalization, charge reversal and disulfide bond breakage of FCSD vectors under the stimulation of tumor extracellular pH (pHe) and intracellular glutathione (GSH) would contribute to the disintegration of vectors and the rapid release of DOX. The sequential therapy that combined Dex pretreatment and targeted chemotherapy by FCSD/DOX NPs demonstrated superior tumor suppression compared with monotherapy, which is expected to provide a potential strategy for FRα-positive lung cancer patients.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Humanos , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamiento farmacológico , Ácido Fólico/química , Doxorrubicina , Micelas , Nanopartículas/química , Dexametasona , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno
2.
Biomater Adv ; 150: 213425, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37084635

RESUMEN

The efficacy of immune checkpoint therapy is limited by the immunosuppressive tumor microenvironment (TME), and lactate, the most universal component of TME, has been rediscovered that plays important roles in the regulation of metabolic pathways, angiogenesis, and immunosuppression. Here, a therapeutic strategy of acidity modulation combined with programmed death ligand-1 (PD-L1) siRNA (siPD-L1) is proposed to synergistically enhance tumor immunotherapy. The lactate oxidase (LOx) is encapsulated into the hollow Prussian blue (HPB) nanoparticles (NPs) prepared by hydrochloric acid etching followed by the modification with polyethyleneimine (PEI) and polyethylene glycol (PEG) via sulfur bonds (HPB-S-PP@LOx), siPD-L1 is loaded via electrostatic adsorption to obtain HPB-S-PP@LOx/siPD-L1. The obtained co-delivery NPs can accumulate in tumor tissue with stable systemic circulation, and simultaneous release of LOx and siPD-L1 in intracellular high glutathione (GSH) environment after uptake by tumor cells without being destroyed by lysosome. Moreover, LOx can catalyze the decomposition of lactate in the hypoxic tumor tissue with the aid of oxygen release by the HPB-S-PP nano-vector. The results show that the acidic TME regulation via lactate consumption can improve the immunosuppressive TME, including revitalizing the exhausted CD8+ T cells and decreasing the proportion of immunosuppressive Tregs, and synergistically elevating the therapeutic effect of PD1/PD-L1 blockade therapy via siPD-L1. This work provides a novel insight for tumor immunotherapy and explores a promising therapy for triple-negative breast cancer.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Linfocitos T CD8-positivos/metabolismo , Terapia de Inmunosupresión , Inmunoterapia/métodos , Lactatos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA