Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 720: 150131, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38763124

RESUMEN

Drug-resistant bacterial infections cause significant harm to public life, health, and property. Biofilm is characterized by overexpression of glutathione (GSH), hypoxia, and slight acidity, which is one of the main factors for the formation of bacterial resistance. Traditional antibiotic therapy gradually loses its efficacy against multi-drug-resistant (MDR) bacteria. Therefore, synergistic therapy, which regulates the biofilm microenvironment, is a promising strategy. A multifunctional nanoplatform, SnFe2O4-PBA/Ce6@ZIF-8 (SBC@ZIF-8), in which tin ferrite (SnFe2O4, denoted as SFO) as the core, loaded with 3-aminobenzeneboronic acid (PBA) and dihydroporphyrin e6 (Ce6), and finally coated with zeolite imidazole salt skeleton 8 (ZIF-8). The platform has a synergistic photothermal therapy (PTT)/photodynamic therapy (PDT) effect, which can effectively remove overexpressed GSH by glutathione peroxidase-like activity, reduce the antioxidant capacity of biofilm, and enhance PDT. The platform had excellent photothermal performance (photothermal conversion efficiency was 55.7 %) and photothermal stability. The inhibition rate of two MDR bacteria was more than 96 %, and the biofilm clearance rate was more than 90 % (150 µg/mL). In the animal model of MDR S. aureus infected wound, after 100 µL SBC@ZIF-8+NIR (150 µg/mL) treatment, the wound area of mice was reduced by 95 % and nearly healed. The serum biochemical indexes and H&E staining results were within the normal range, indicating that the platform could promote wound healing and had good biosafety. In this study, we designed and synthesized multifunctional nanoplatforms with good anti-drug-resistant bacteria effect and elucidated the molecular mechanism of its anti-drug-resistant bacteria. It lays a foundation for clinical application in treating wound infection and promoting wound healing.


Asunto(s)
Antibacterianos , Estructuras Metalorgánicas , Fotoquimioterapia , Antibacterianos/farmacología , Antibacterianos/química , Fotoquimioterapia/métodos , Animales , Ratones , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Biopelículas/efectos de los fármacos , Terapia Fototérmica , Staphylococcus aureus/efectos de los fármacos , Nanopartículas/química , Pruebas de Sensibilidad Microbiana , Compuestos Férricos/química , Compuestos Férricos/farmacología , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Zeolitas/química , Zeolitas/farmacología
2.
Angew Chem Int Ed Engl ; 63(5): e202317393, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38062863

RESUMEN

Organic electrode materials have attracted a lot interest in batteries in recent years. However, most of them still suffer from low performance such as low electrode potential, slow reaction kinetics, and short cycle life. In this work, we report a strategy of fabricating donor-acceptor (D-A) conjugated polymers for facilitating the charge transfer and therefore accelerating the reaction kinetics by using the copolymer (p-TTPZ) of dihydrophenazine (PZ) and thianthrene (TT) as a proof-of-concept. The D-A conjugated polymer as p-type cathode could store anions and exhibited high discharge voltages (two plateaus at 3.82 V, 3.16 V respectively), a reversible capacity of 152 mAh g-1 at 0.1 A g-1 , excellent rate performance with a high capacity of 124.2 mAh g-1 at 10 A g-1 (≈50 C) and remarkable cyclability. The performance, especially the rate capability was much higher than that of its counterpart homopolymers without D-A structure. As a result, the p-TTPZ//graphite full cells showed a high output voltage (3.26 V), a discharge specific capacity of 139.1 mAh g-1 at 0.05 A g-1 and excellent rate performance. This work provides a novel strategy for developing high performance organic electrode materials through molecular design and will pave a way towards high energy density organic batteries.

3.
Nanotechnology ; 34(24)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36878001

RESUMEN

In order to prevent drugs from being captured and degraded by the acidic environment of organelles, such as lysosomes, after entering cells, this study designed and synthesized a novel carrier amphiphilic polypeptide (DGRHHHLLLAAAA), designated P13, for use as a tumor-targeting drug delivery vehicle. The P13 peptide was synthesized by the solid phase synthesis method, and its self-assembly behavior and drug-loading capacity in aqueous solution were studied and characterizedin vitro. Doxorubicin (DOX) was loaded by dialysis method, and P13 and DOX were mixed at a mass ratio of 6:1 to form regular rounded globules. The acid-base buffering capacity of P13 was investigated determined by acid-base titration. The results revealed that P13 had excellent acid-base buffering capacity, a critical micelle concentration value of about 0.000 21 g l-1, and the particle size of P13-Dox nanospheres was 167 nm. The drug encapsulation efficiency and drug loading capacity of micelles were 20.40 ± 1.21% and 21.25 ± 2.79%, respectively. At the concentration of 50µg ml-1of P13-DOX , the inhibition rate was 73.35%. The results of thein vivoantitumor activity assay in mice showed that P13-DOX also exhibited excellent inhibitory effect on tumor growth, compared with the tumor weight of 1.1 g in the control group, the tumor weight in the P13-DOX-treated group was only 0.26 g. Additionally, the results of hematoxylin and eosin staining of the organs showed that P13-DOX had no damaging effect on normal tissues. The novel amphiphilic peptide P13 with proton sponge effect designed and prepared in this study is expected to be a promising tumor-targeting drug carrier with excellent application potential.


Asunto(s)
Neoplasias , Protones , Animales , Ratones , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Portadores de Fármacos , Micelas , Péptidos/farmacología , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
4.
ACS Omega ; 8(22): 19402-19412, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37305251

RESUMEN

Recently, the combination of chemotherapy and chemodynamic therapy (CDT) has become a desirable strategy in the treatment of cancer. However, a satisfactory therapeutic outcome is often difficult to achieve due to the deficiency of endogenous H2O2 and O2 in the tumor microenvironment. In this study, a CaO2@DOX@Cu/ZIF-8 nanocomposite was prepared as a novel nanocatalytic platform to enable the combination of chemotherapy and CDT in cancer cells. The anticancer drug doxorubicin hydrochloride (DOX) was loaded onto calcium peroxide (CaO2) nanoparticles (NPs) to form CaO2@DOX, which was then encapsulated in a copper zeolitic imidazole ester MOF (Cu/ZIF-8) to form CaO2@DOX@Cu/ZIF-8 NPs. In the mildly acidic tumor microenvironment, CaO2@DOX@Cu/ZIF-8 NPs rapidly disintegrated, releasing CaO2, which reacted with water to generate H2O2 and O2 in the tumor microenvironment. The ability of CaO2@DOX@Cu/ZIF-8 NPs to combine chemotherapy and CDT was assessed by conducting cytotoxicity, living dead staining, cellular uptakes, H&E staining, and TUNEL assays in vitro and in vivo. The combination of chemotherapy and CDT of CaO2@DOX@Cu/ZIF-8 NPs had a more favorable tumor suppression effect than the nanomaterial precursors, which were not capable of the combined chemotherapy/CDT.

5.
ACS Biomater Sci Eng ; 8(10): 4274-4288, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36095153

RESUMEN

Drug-resistant bacterial infections pose a serious threat to human public health. Biofilm formation is one of the main factors contributing to the development of bacterial resistance, characterized by a hypoxic and microacidic microenvironment. Traditional antibiotic treatments have been ineffective against multidrug-resistant (MDR) bacteria. Novel monotherapies have had little success. On the basis of the photothermal effect, molybdenum disulfide (MoS2) nanoparticles were used to link quaternized polyethylenimine (QPEI), dihydroporphyrin e6 (Ce6), and Panax notoginseng saponins (PNS) in a zeolitic imidazolate framework-8 (ZIF-8). A multifunctional nanoplatform (MQCP@ZIF-8) was constructed with dual response to pH and near-infrared light (NIR), which resulted in synergistic photothermal and photodynamic antibacterial effects. The nanoplatform exhibited a photothermal conversion efficiency of 56%. It inhibited MDR Escherichia coli (E. coli) and MDR Staphylococcus aureus (S. aureus) by more than 95% and effectively promoted wound healing in mice infected with MDR S. aureus. The nanoplatform induced the death of MDR bacteria by promoting biofilm ablation, disrupting bacterial cell membranes and intracellular DNA, and interfering with intracellular material and energy metabolism. In this study, a multifunctional nanoplatform with good antibacterial effect was developed. The molecular mechanisms of MDR bacteria were also elucidated for possible clinical application.


Asunto(s)
Molibdeno , Saponinas , Animales , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas , Sistemas de Liberación de Medicamentos/métodos , Escherichia coli , Humanos , Ratones , Molibdeno/química , Molibdeno/farmacología , Fototerapia/métodos , Polietileneimina/farmacología , Staphylococcus aureus , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA