Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(6): 3211-3227, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31956907

RESUMEN

Tens of thousands of rapidly evolving long non-coding RNA (lncRNA) genes have been identified, but functions were assigned to relatively few of them. The lncRNA contribution to the mouse oocyte physiology remains unknown. We report the evolutionary history and functional analysis of Sirena1, the most expressed lncRNA and the 10th most abundant poly(A) transcript in mouse oocytes. Sirena1 appeared in the common ancestor of mouse and rat and became engaged in two different post-transcriptional regulations. First, antisense oriented Elob pseudogene insertion into Sirena1 exon 1 is a source of small RNAs targeting Elob mRNA via RNA interference. Second, Sirena1 evolved functional cytoplasmic polyadenylation elements, an unexpected feature borrowed from translation control of specific maternal mRNAs. Sirena1 knock-out does not affect fertility, but causes minor dysregulation of the maternal transcriptome. This includes increased levels of Elob and mitochondrial mRNAs. Mitochondria in Sirena1-/- oocytes disperse from the perinuclear compartment, but do not change in number or ultrastructure. Taken together, Sirena1 contributes to RNA interference and mitochondrial aggregation in mouse oocytes. Sirena1 exemplifies how lncRNAs stochastically engage or even repurpose molecular mechanisms during evolution. Simultaneously, Sirena1 expression levels and unique functional features contrast with the lack of functional importance assessed under laboratory conditions.


Asunto(s)
Mitocondrias/genética , Oocitos/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mitocondrial/genética , Animales , Técnicas de Inactivación de Genes , Ratones , Mitocondrias/ultraestructura , Oocitos/crecimiento & desarrollo , Oocitos/ultraestructura , Poliadenilación/genética , Ratas , Transcriptoma/genética
2.
Cells ; 13(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38786074

RESUMEN

Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic polyadenylation element-binding protein 3 (CPEB3) negatively affects female reproductive fitness. CPEB3-depleted oocytes undergo meiosis normally but experience early embryonic arrest due to a disrupted transcriptome, leading to aberrant protein expression and the subsequent failure of embryonic transcription initiation. We found that CPEB3 stabilizes a subset of mRNAs with a significantly longer 3'UTR that is enriched in its distal region with cytoplasmic polyadenylation elements. Overall, our results suggest that CPEB3 is an important maternal factor that regulates the stability and translation of a subclass of mRNAs that are essential for the initiation of embryonic transcription and thus for embryonic development.


Asunto(s)
Oocitos , Proteínas de Unión al ARN , Oocitos/metabolismo , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Femenino , Ratones , Meiosis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Regiones no Traducidas 3'/genética , Poliadenilación , Estabilidad del ARN/genética
3.
J Mol Biol ; 433(19): 167166, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34293340

RESUMEN

During oocyte growth the cell accumulates RNAs to contribute to oocyte and embryo development which progresses with ceased transcription. To investigate the subcellular distribution of specific RNAs and their translation we developed a technique revealing several instances of localized translation with distinctive regulatory implications. We analyzed the localization and expression of candidate non-coding and mRNAs in the mouse oocyte and embryo. Furthermore, we established simultaneous visualization of mRNA and in situ translation events validated with polysomal occupancy. We discovered that translationally dormant and abundant mRNAs CyclinB1 and Mos are localized in the cytoplasm of the fully grown GV oocyte forming cloud-like structures with consequent abundant translation at the center of the MII oocyte. Coupling detection of the localization of specific single mRNA molecules with their translation at the subcellular context is a valuable tool to quantitatively study temporal and spatial translation of specific target mRNAs to understand molecular processes in the developing cell.


Asunto(s)
Ciclina B1/genética , Embrión de Mamíferos/química , Oocitos/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-mos/genética , Imagen Individual de Molécula/métodos , Animales , Citoplasma/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Hibridación Fluorescente in Situ , Ratones , Oocitos/química , Polirribosomas/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN no Traducido/genética
4.
Aging Cell ; 19(10): e13231, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32951297

RESUMEN

Increasing maternal age in mammals is associated with poorer oocyte quality, involving higher aneuploidy rates and decreased developmental competence. Prior to resumption of meiosis, fully developed mammalian oocytes become transcriptionally silent until the onset of zygotic genome activation. Therefore, meiotic progression and early embryogenesis are driven largely by translational utilization of previously synthesized mRNAs. We report that genome-wide translatome profiling reveals considerable numbers of transcripts that are differentially translated in oocytes obtained from aged compared to young females. Additionally, we show that a number of aberrantly translated mRNAs in oocytes from aged females are associated with cell cycle. Indeed, we demonstrate that four specific maternal age-related transcripts (Sgk1, Castor1, Aire and Eg5) with differential translation rates encode factors that are associated with the newly forming meiotic spindle. Moreover, we report substantial defects in chromosome alignment and cytokinesis in the oocytes of young females, in which candidate CASTOR1 and SGK1 protein levels or activity are experimentally altered. Our findings indicate that improper translation of specific proteins at the onset of meiosis contributes to increased chromosome segregation problems associated with female ageing.


Asunto(s)
Oocitos/metabolismo , Factores de Edad , Animales , Femenino , Humanos , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA