Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(5): 1076-1100, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428389

RESUMEN

Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Disciplinas de las Ciencias Biológicas , Terapia Genética , Tecnología
2.
Cell ; 185(26): 4999-5010.e17, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36435179

RESUMEN

CRISPR-Cas systems have been co-opted by Tn7-like transposable elements to direct RNA-guided transposition. Type V-K CRISPR-associated transposons rely on the concerted activities of the pseudonuclease Cas12k, the AAA+ ATPase TnsC, the Zn-finger protein TniQ, and the transposase TnsB. Here we present a cryo-electron microscopic structure of a target DNA-bound Cas12k-transposon recruitment complex comprised of RNA-guided Cas12k, TniQ, a polymeric TnsC filament and, unexpectedly, the ribosomal protein S15. Complex assembly, mediated by a network of interactions involving the guide RNA, TniQ, and S15, results in R-loop completion. TniQ contacts two TnsC protomers at the Cas12k-proximal filament end, likely nucleating its polymerization. Transposition activity assays corroborate our structural findings, implying that S15 is a bona fide component of the type V crRNA-guided transposon machinery. Altogether, our work uncovers key mechanistic aspects underpinning RNA-mediated assembly of CRISPR-associated transposons to guide their development as programmable tools for site-specific insertion of large DNA payloads.


Asunto(s)
Proteínas Asociadas a CRISPR , Elementos Transponibles de ADN , Elementos Transponibles de ADN/genética , Sistemas CRISPR-Cas , Transposasas/genética , Proteínas de Unión al ADN/metabolismo , ARN , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética
3.
Cell ; 185(22): 4067-4081.e21, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36306733

RESUMEN

The target DNA specificity of the CRISPR-associated genome editor nuclease Cas9 is determined by complementarity to a 20-nucleotide segment in its guide RNA. However, Cas9 can bind and cleave partially complementary off-target sequences, which raises safety concerns for its use in clinical applications. Here, we report crystallographic structures of Cas9 bound to bona fide off-target substrates, revealing that off-target binding is enabled by a range of noncanonical base-pairing interactions within the guide:off-target heteroduplex. Off-target substrates containing single-nucleotide deletions relative to the guide RNA are accommodated by base skipping or multiple noncanonical base pairs rather than RNA bulge formation. Finally, PAM-distal mismatches result in duplex unpairing and induce a conformational change in the Cas9 REC lobe that perturbs its conformational activation. Together, these insights provide a structural rationale for the off-target activity of Cas9 and contribute to the improved rational design of guide RNAs and off-target prediction algorithms.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , ARN Guía de Kinetoplastida/metabolismo , Endonucleasas/metabolismo , Emparejamiento Base , Nucleótidos , Edición Génica
4.
Mol Cell ; 81(17): 3637-3649.e5, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478654

RESUMEN

The off-target activity of the CRISPR-associated nuclease Cas9 is a potential concern for therapeutic genome editing applications. Although high-fidelity Cas9 variants have been engineered, they exhibit varying efficiencies and have residual off-target effects, limiting their applicability. Here, we show that CRISPR hybrid RNA-DNA (chRDNA) guides provide an effective approach to increase Cas9 specificity while preserving on-target editing activity. Across multiple genomic targets in primary human T cells, we show that 2'-deoxynucleotide (dnt) positioning affects guide activity and specificity in a target-dependent manner and that this can be used to engineer chRDNA guides with substantially reduced off-target effects. Crystal structures of DNA-bound Cas9-chRDNA complexes reveal distorted guide-target duplex geometry and allosteric modulation of Cas9 conformation. These structural effects increase specificity by perturbing DNA hybridization and modulating Cas9 activation kinetics to disfavor binding and cleavage of off-target substrates. Overall, these results pave the way for utilizing customized chRDNAs in clinical applications.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Linfocitos T/metabolismo , Proteína 9 Asociada a CRISPR/fisiología , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/fisiología , ADN/genética , Endonucleasas/genética , Edición Génica/métodos , Técnicas Genéticas , Genoma/genética , Genómica/métodos , Humanos , Leucocitos Mononucleares/metabolismo , Conformación Molecular , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad , Linfocitos T/fisiología
5.
Mol Cell ; 81(12): 2520-2532.e16, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33930333

RESUMEN

The tRNA ligase complex (tRNA-LC) splices precursor tRNAs (pre-tRNA), and Xbp1-mRNA during the unfolded protein response (UPR). In aerobic conditions, a cysteine residue bound to two metal ions in its ancient, catalytic subunit RTCB could make the tRNA-LC susceptible to oxidative inactivation. Here, we confirm this hypothesis and reveal a co-evolutionary association between the tRNA-LC and PYROXD1, a conserved and essential oxidoreductase. We reveal that PYROXD1 preserves the activity of the mammalian tRNA-LC in pre-tRNA splicing and UPR. PYROXD1 binds the tRNA-LC in the presence of NAD(P)H and converts RTCB-bound NAD(P)H into NAD(P)+, a typical oxidative co-enzyme. However, NAD(P)+ here acts as an antioxidant and protects the tRNA-LC from oxidative inactivation, which is dependent on copper ions. Genetic variants of PYROXD1 that cause human myopathies only partially support tRNA-LC activity. Thus, we establish the tRNA-LC as an oxidation-sensitive metalloenzyme, safeguarded by the flavoprotein PYROXD1 through an unexpected redox mechanism.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , ARN Ligasa (ATP)/metabolismo , ARN de Transferencia/metabolismo , Animales , Antioxidantes/fisiología , Dominio Catalítico , Femenino , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/fisiología , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/genética , Empalme del ARN/genética , Empalme del ARN/fisiología , Respuesta de Proteína Desplegada/fisiología , Proteína 1 de Unión a la X-Box/metabolismo
6.
Nature ; 609(7925): 191-196, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002571

RESUMEN

Cas9 is a CRISPR-associated endonuclease capable of RNA-guided, site-specific DNA cleavage1-3. The programmable activity of Cas9 has been widely utilized for genome editing applications4-6, yet its precise mechanisms of target DNA binding and off-target discrimination remain incompletely understood. Here we report a series of cryo-electron microscopy structures of Streptococcus pyogenes Cas9 capturing the directional process of target DNA hybridization. In the early phase of R-loop formation, the Cas9 REC2 and REC3 domains form a positively charged cleft that accommodates the distal end of the target DNA duplex. Guide-target hybridization past the seed region induces rearrangements of the REC2 and REC3 domains and relocation of the HNH nuclease domain to assume a catalytically incompetent checkpoint conformation. Completion of the guide-target heteroduplex triggers conformational activation of the HNH nuclease domain, enabled by distortion of the guide-target heteroduplex, and complementary REC2 and REC3 domain rearrangements. Together, these results establish a structural framework for target DNA-dependent activation of Cas9 that sheds light on its conformational checkpoint mechanism and may facilitate the development of novel Cas9 variants and guide RNA designs with enhanced specificity and activity.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Dominios Proteicos , Estructuras R-Loop , Streptococcus pyogenes , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/ultraestructura , Catálisis , ADN/metabolismo , División del ADN , Activación Enzimática , Edición Génica , ARN Guía de Kinetoplastida/metabolismo , Streptococcus pyogenes/enzimología , Especificidad por Sustrato
7.
Nature ; 599(7885): 497-502, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759315

RESUMEN

Canonical CRISPR-Cas systems provide adaptive immunity against mobile genetic elements1. However, type I-F, I-B and V-K systems have been adopted by Tn7-like transposons to direct RNA-guided transposon insertion2-7. Type V-K CRISPR-associated transposons rely on the pseudonuclease Cas12k, the transposase TnsB, the AAA+ ATPase TnsC and the zinc-finger protein TniQ7, but the molecular mechanism of RNA-directed DNA transposition has remained elusive. Here we report cryo-electron microscopic structures of a Cas12k-guide RNA-target DNA complex and a DNA-bound, polymeric TnsC filament from the CRISPR-associated transposon system of the photosynthetic cyanobacterium Scytonema hofmanni. The Cas12k complex structure reveals an intricate guide RNA architecture and critical interactions mediating RNA-guided target DNA recognition. TnsC helical filament assembly is ATP-dependent and accompanied by structural remodelling of the bound DNA duplex. In vivo transposition assays corroborate key features of the structures, and biochemical experiments show that TniQ restricts TnsC polymerization, while TnsB interacts directly with TnsC filaments to trigger their disassembly upon ATP hydrolysis. Together, these results suggest that RNA-directed target selection by Cas12k primes TnsC polymerization and DNA remodelling, generating a recruitment platform for TnsB to catalyse site-specific transposon insertion. Insights from this work will inform the development of CRISPR-associated transposons as programmable site-specific gene insertion tools.


Asunto(s)
Sistemas CRISPR-Cas , Cianobacterias , Elementos Transponibles de ADN/genética , Edición Génica/métodos , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Biopolímeros , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Microscopía por Crioelectrón , Cianobacterias/enzimología , Cianobacterias/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/ultraestructura , Modelos Moleculares , Mutagénesis Insercional , Polimerizacion , ARN/genética , ARN/metabolismo , Especificidad por Sustrato , Transposasas/metabolismo , Transposasas/ultraestructura , Dedos de Zinc
8.
Mol Cell ; 73(3): 589-600.e4, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639240

RESUMEN

CRISPR-Cas12a (Cpf1) is an RNA-guided DNA-cutting nuclease that has been repurposed for genome editing. Upon target DNA binding, Cas12a cleaves both the target DNA in cis and non-target single-stranded DNAs (ssDNAs) in trans. To elucidate the molecular basis for both DNase cleavage modes, we performed structural and biochemical studies on Francisella novicida Cas12a. We show that guide RNA-target strand DNA hybridization conformationally activates Cas12a, triggering its trans-acting, non-specific, single-stranded DNase activity. In turn, cis cleavage of double-stranded DNA targets is a result of protospacer adjacent motif (PAM)-dependent DNA duplex unwinding, electrostatic stabilization of the displaced non-target DNA strand, and ordered sequential cleavage of the non-target and target DNA strands. Cas12a releases the PAM-distal DNA cleavage product and remains bound to the PAM-proximal DNA cleavage product in a catalytically competent, trans-active state. Together, these results provide a revised model for the molecular mechanisms of both the cis- and the trans-acting DNase activities of Cas12a enzymes, enabling their further exploitation as genome editing tools.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN de Cadena Simple/metabolismo , Francisella/enzimología , Edición Génica/métodos , ARN Guía de Kinetoplastida/metabolismo , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Activación Enzimática , Francisella/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad , Especificidad por Sustrato
9.
Nat Chem Biol ; 20(3): 333-343, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37735239

RESUMEN

CRISPR-Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of Campylobacter jejuni Cas9 (CjCas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evoCjCas9, primarily recognizes N4AH and N5HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N3VRYAC PAM site. Moreover, evoCjCas9 exhibits higher nuclease activity than wild-type CjCas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed SpCas9 variants. Combined with deaminases or reverse transcriptases, evoCjCas9 enables robust base and prime editing, with the small size of evoCjCas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Mutación , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Genoma
10.
Nucleic Acids Res ; 52(1): 462-473, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38033326

RESUMEN

Type III CRISPR-Cas systems provide adaptive immunity against foreign mobile genetic elements through RNA-guided interference. Sequence-specific recognition of RNA targets by the type III effector complex triggers the generation of cyclic oligoadenylate (cOA) second messengers that activate ancillary effector proteins, thus reinforcing the host immune response. The ancillary nuclease Can2 is activated by cyclic tetra-AMP (cA4); however, the mechanisms underlying cA4-mediated activation and substrate selectivity remain elusive. Here we report crystal structures of Thermoanaerobacter brockii Can2 (TbrCan2) in substrate- and product-bound complexes. We show that TbrCan2 is a single strand-selective DNase and RNase that binds substrates via a conserved SxTTS active site motif, and reveal molecular interactions underpinning its sequence preference for CA dinucleotides. Furthermore, we identify a molecular interaction relay linking the cA4 binding site and the nuclease catalytic site to enable divalent metal cation coordination and catalytic activation. These findings provide key insights into the molecular mechanisms of Can2 nucleases in type III CRISPR-Cas immunity and may guide their technological development for nucleic acid detection applications.


Asunto(s)
Proteínas Asociadas a CRISPR , Endorribonucleasas , Thermoanaerobacter , Sitios de Unión , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Endorribonucleasas/metabolismo , ARN/metabolismo , Sistemas de Mensajero Secundario , Thermoanaerobacter/enzimología , Thermoanaerobacter/metabolismo
11.
Nucleic Acids Res ; 52(4): 2012-2029, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38224450

RESUMEN

In both prokaryotic and eukaryotic innate immune systems, TIR domains function as NADases that degrade the key metabolite NAD+ or generate signaling molecules. Catalytic activation of TIR domains requires oligomerization, but how this is achieved varies in distinct immune systems. In the Short prokaryotic Argonaute (pAgo)/TIR-APAZ (SPARTA) immune system, TIR NADase activity is triggered upon guide RNA-mediated recognition of invading DNA by an unknown mechanism. Here, we describe cryo-EM structures of SPARTA in the inactive monomeric and target DNA-activated tetrameric states. The monomeric SPARTA structure reveals that in the absence of target DNA, a C-terminal tail of TIR-APAZ occupies the nucleic acid binding cleft formed by the pAgo and TIR-APAZ subunits, inhibiting SPARTA activation. In the active tetrameric SPARTA complex, guide RNA-mediated target DNA binding displaces the C-terminal tail and induces conformational changes in pAgo that facilitate SPARTA-SPARTA dimerization. Concurrent release and rotation of one TIR domain allow it to form a composite NADase catalytic site with the other TIR domain within the dimer, and generate a self-complementary interface that mediates cooperative tetramerization. Combined, this study provides critical insights into the structural architecture of SPARTA and the molecular mechanism underlying target DNA-dependent oligomerization and catalytic activation.


Asunto(s)
Inmunidad Innata , Células Procariotas , Sistema Inmunológico , NAD+ Nucleosidasa , Células Procariotas/inmunología , ARN Guía de Sistemas CRISPR-Cas , Transducción de Señal , Eucariontes/inmunología
12.
Mol Cell ; 66(2): 221-233.e4, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431230

RESUMEN

The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both activities, we determined crystal structures of Francisella novicida Cas12a bound to guide RNA and in complex with an R-loop formed by a non-cleavable guide RNA precursor and a full-length target DNA. Corroborated by biochemical experiments, these structures reveal the mechanisms of guide RNA processing and pre-ordering of the seed sequence in the guide RNA that primes Cas12a for target DNA binding. Furthermore, the R-loop complex structure reveals the strand displacement mechanism that facilitates guide-target hybridization and suggests a mechanism for double-stranded DNA cleavage involving a single active site. Together, these insights advance our mechanistic understanding of Cas12a enzymes and may contribute to further development of genome editing technologies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/metabolismo , Endonucleasas/metabolismo , Francisella/enzimología , Edición Génica/métodos , Precursores del ARN/metabolismo , ARN Bacteriano/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Catálisis , ADN Bacteriano/química , ADN Bacteriano/genética , Endonucleasas/química , Endonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Francisella/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Precursores del ARN/química , Precursores del ARN/genética , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad
14.
Mol Cell ; 61(6): 895-902, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990992

RESUMEN

The RNA-guided endonuclease Cas9 from Streptococcus pyogenes (SpCas9) forms the core of a powerful genome editing technology. DNA cleavage by SpCas9 is dependent on the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) in the target DNA, restricting the choice of targetable sequences. To address this limitation, artificial SpCas9 variants with altered PAM specificities have recently been developed. Here we report crystal structures of the VQR, EQR, and VRER SpCas9 variants bound to target DNAs containing their preferred PAM sequences. The structures reveal that the non-canonical PAMs are recognized by an induced fit mechanism. Besides mediating sequence-specific base recognition, the amino acid substitutions introduced in the SpCas9 variants facilitate conformational remodeling of the PAM region of the bound DNA. Guided by the structural data, we engineered a SpCas9 variant that specifically recognizes NAAG PAMs. Taken together, these studies inform further development of Cas9-based genome editing tools.


Asunto(s)
Proteínas Bacterianas/química , Sistemas CRISPR-Cas , ADN Intergénico/genética , Endonucleasas/química , ARN Guía de Kinetoplastida/química , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/genética , Proteína 9 Asociada a CRISPR , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN Intergénico/química , Endonucleasas/genética , Ingeniería Genética , Mutación , Conformación de Ácido Nucleico , Motivos de Nucleótidos/genética , ARN Guía de Kinetoplastida/genética , Especificidad por Sustrato
15.
Nature ; 548(7669): 543-548, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28722012

RESUMEN

In many prokaryotes, type III clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) systems detect and degrade invasive genetic elements by an RNA-guided, RNA-targeting multisubunit interference complex. The CRISPR-associated protein Csm6 additionally contributes to interference by functioning as a standalone RNase that degrades invader RNA transcripts, but the mechanism linking invader sensing to Csm6 activity is not understood. Here we show that Csm6 proteins are activated through a second messenger generated by the type III interference complex. Upon target RNA binding by the interference complex, its Cas10 subunit converts ATP into a cyclic oligoadenylate product, which allosterically activates Csm6 by binding to its CRISPR-associated Rossmann fold (CARF) domain. CARF domain mutations that abolish allosteric activation inhibit Csm6 activity in vivo, and mutations in the Cas10 Palm domain phenocopy loss of Csm6. Together, these results point to an unprecedented mechanism for regulation of CRISPR interference that bears striking conceptual similarity to oligoadenylate signalling in mammalian innate immunity.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas de Mensajero Secundario/genética , Sistemas de Mensajero Secundario/fisiología , Regulación Alostérica , Difusión , Activación Enzimática , Euryarchaeota/enzimología , Euryarchaeota/genética , Inmunidad Innata , Dominios Proteicos/genética , Ribonucleasas/metabolismo , Thermus thermophilus/enzimología , Thermus thermophilus/genética
16.
EMBO J ; 37(7)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29510985

RESUMEN

The LSM domain-containing protein LSM14/Rap55 plays a role in mRNA decapping, translational repression, and RNA granule (P-body) assembly. How LSM14 interacts with the mRNA silencing machinery, including the eIF4E-binding protein 4E-T and the DEAD-box helicase DDX6, is poorly understood. Here we report the crystal structure of the LSM domain of LSM14 bound to a highly conserved C-terminal fragment of 4E-T. The 4E-T C-terminus forms a bi-partite motif that wraps around the N-terminal LSM domain of LSM14. We also determined the crystal structure of LSM14 bound to the C-terminal RecA-like domain of DDX6. LSM14 binds DDX6 via a unique non-contiguous motif with distinct directionality as compared to other DDX6-interacting proteins. Together with mutational and proteomic studies, the LSM14-DDX6 structure reveals that LSM14 has adopted a divergent mode of binding DDX6 in order to support the formation of mRNA silencing complexes and P-body assembly.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN/fisiología , ARN Mensajero/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Caenorhabditis elegans , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , Drosophila melanogaster , Factor 4E Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas/química , Proteínas/metabolismo , Proteómica , Proteínas Proto-Oncogénicas/genética , Rec A Recombinasas/química , Proteínas Recombinantes/química , Ribonucleoproteínas/genética , Alineación de Secuencia
17.
J Am Chem Soc ; 143(40): 16313-16319, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34597515

RESUMEN

Single-molecule measurements provide detailed mechanistic insights into molecular processes, for example in genome regulation where DNA access is controlled by nucleosomes and the chromatin machinery. However, real-time single-molecule observations of nuclear factors acting on defined chromatin substrates are challenging to perform quantitatively and reproducibly. Here we present XSCAN (multiplexed single-molecule detection of chromatin association), a method to parallelize single-molecule experiments by simultaneous imaging of a nucleosome library, where each nucleosome type carries an identifiable DNA sequence within its nucleosomal DNA. Parallel experiments are subsequently spatially decoded, via the detection of specific binding of dye-labeled DNA probes. We use this method to reveal how the Cas9 nuclease overcomes the nucleosome barrier when invading chromatinized DNA as a function of PAM position.


Asunto(s)
Nucleosomas
18.
RNA ; 25(6): 685-701, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30910870

RESUMEN

Eukaryotic ribosome biogenesis is a highly orchestrated process involving numerous assembly factors including ATP-dependent RNA helicases. The DEAH helicase DHX37 (Dhr1 in yeast) is activated by the ribosome biogenesis factor UTP14A to facilitate maturation of the small ribosomal subunit. We report the crystal structure of DHX37 in complex with single-stranded RNA, revealing a canonical DEAH ATPase/helicase architecture complemented by a structurally unique carboxy-terminal domain (CTD). Structural comparisons of the nucleotide-free DHX37-RNA complex with DEAH helicases bound to RNA and ATP analogs reveal conformational changes resulting in a register shift in the bound RNA, suggesting a mechanism for ATP-dependent 3'-5' RNA translocation. We further show that a conserved sequence motif in UTP14A interacts with and activates DHX37 by stimulating its ATPase activity and enhancing RNA binding. In turn, the CTD of DHX37 is required, but not sufficient, for interaction with UTP14A in vitro and is essential for ribosome biogenesis in vivo. Together, these results shed light on the mechanism of DHX37 and the function of UTP14A in controlling its recruitment and activity during ribosome biogenesis.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/análogos & derivados , ARN Helicasas DEAD-box/química , Biogénesis de Organelos , ARN Helicasas/química , ARN/química , Ribonucleoproteínas Nucleolares Pequeñas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Ratones , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Especificidad por Sustrato
19.
Nucleic Acids Res ; 47(2): 1030-1042, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30462292

RESUMEN

Non-templated 3'-uridylation of RNAs has emerged as an important mechanism for regulating the processing, stability and biological function of eukaryotic transcripts. In Drosophila, oligouridine tailing by the terminal uridylyl transferase (TUTase) Tailor of numerous RNAs induces their degradation by the exonuclease Dis3L2, which serves functional roles in RNA surveillance and mirtron RNA biogenesis. Tailor preferentially uridylates RNAs terminating in guanosine or uridine nucleotides but the structural basis underpinning its RNA substrate selectivity is unknown. Here, we report crystal structures of Tailor bound to a donor substrate analog or mono- and oligouridylated RNA products. These structures reveal specific amino acid residues involved in donor and acceptor substrate recognition, and complementary biochemical assays confirm the critical role of an active site arginine in conferring selectivity toward 3'-guanosine terminated RNAs. Notably, conservation of these active site features suggests that other eukaryotic TUTases, including mammalian TUT4 and TUT7, might exhibit similar, hitherto unknown, substrate selectivity. Together, these studies provide critical insights into the specificity of 3'-uridylation in eukaryotic post-transcriptional gene regulation.


Asunto(s)
Proteínas de Drosophila/química , Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/química , Animales , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Modelos Moleculares , Nucleotidiltransferasas/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Especificidad por Sustrato
20.
Nucleic Acids Res ; 47(11): 5809-5821, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31069393

RESUMEN

Prokaryotic Argonaute proteins (pAgos) constitute a diverse group of endonucleases of which some mediate host defense by utilizing small interfering DNA guides (siDNA) to cleave complementary invading DNA. This activity can be repurposed for programmable DNA cleavage. However, currently characterized DNA-cleaving pAgos require elevated temperatures (≥65°C) for their activity, making them less suitable for applications that require moderate temperatures, such as genome editing. Here, we report the functional and structural characterization of the siDNA-guided DNA-targeting pAgo from the mesophilic bacterium Clostridium butyricum (CbAgo). CbAgo displays a preference for siDNAs that have a deoxyadenosine at the 5'-end and thymidines at nucleotides 2-4. Furthermore, CbAgo mediates DNA-guided DNA cleavage of AT-rich double stranded DNA at moderate temperatures (37°C). This study demonstrates that certain pAgos are capable of programmable DNA cleavage at moderate temperatures and thereby expands the scope of the potential pAgo-based applications.


Asunto(s)
Proteínas Argonautas/metabolismo , Clostridium butyricum/metabolismo , División del ADN , ADN/química , Proteínas Argonautas/genética , Proteínas Bacterianas/metabolismo , Clostridium butyricum/genética , ADN/metabolismo , ADN de Cadena Simple/análisis , Transferencia Resonante de Energía de Fluorescencia , Edición Génica , Silenciador del Gen , Mutación , Filogenia , Plásmidos/metabolismo , Unión Proteica , ARN Guía de Kinetoplastida , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA