Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(11): e18442, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842135

RESUMEN

Epithelial-mesenchymal transition (EMT) and its reversal process are important potential mechanisms in the development of HCC. Selaginella doederleinii Hieron is widely used in Traditional Chinese Medicine for the treatment of various tumours and Amentoflavone is its main active ingredient. This study investigates the mechanism of action of Amentoflavone on EMT in hepatocellular carcinoma from the perspective of bioinformatics and network pharmacology. Bioinformatics was used to screen Amentoflavone-regulated EMT genes that are closely related to the prognosis of HCC, and a molecular prediction model was established to assess the prognosis of HCC. The network pharmacology was used to predict the pathway axis regulated by Amentoflavone. Molecular docking of Amentoflavone with corresponding targets was performed. Detection and evaluation of the effects of Amentoflavone on cell proliferation, migration, invasion and apoptosis by CCK-8 kit, wound healing assay, Transwell assay and annexin V-FITC/propidium iodide staining. Eventually three core genes were screened, inculding NR1I2, CDK1 and CHEK1. A total of 590 GO enrichment entries were obtained, and five enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in the p53 signalling pathway. The outcomes derived from both the wound healing assay and Transwell assay demonstrated significant inhibition of migration and invasion in HCC cells upon exposure to different concentrations of Amentoflavone. The results of Annexin V-FITC/PI staining assay showed that different concentrations of Amentoflavone induces apoptosis in HCC cells. This study revealed that the mechanism of Amentoflavone reverses EMT in hepatocellular carcinoma, possibly by inhibiting the expression of core genes and blocking the p53 signalling pathway axis to inhibit the migration and invasion of HCC cells.


Asunto(s)
Apoptosis , Biflavonoides , Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Transducción de Señal , Proteína p53 Supresora de Tumor , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Biflavonoides/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Transducción de Señal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Biología Computacional/métodos
2.
Glia ; 72(9): 1646-1662, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38801194

RESUMEN

The adult brain retains a high repopulation capacity of astrocytes after deletion, and both mature astrocytes in the neocortex and neural stem cells in neurogenic regions possess the potential to generate astrocytes. However, the origin and the repopulation dynamics of the repopulating astrocytes after deletion remain largely unclear. The number of astrocytes is reduced in the medial prefrontal cortex (mPFC) of patients with depression, and selective elimination of mPFC astrocytes is sufficient to induce depression-like behaviors in rodents. However, whether astrocyte repopulation capacity is impaired in depression is unknown. In this study, we used different transgenic mouse lines to genetically label different cell types and demonstrated that in the mPFC of normal adult mice of both sexes, mature astrocytes were a major source of the repopulating astrocytes after acute deletion induced by an astrocyte-specific toxin, L-alpha-aminoadipic acid (L-AAA), and astrocyte regeneration was accomplished within two weeks accompanied by reversal of depression-like behaviors. Furthermore, re-ablation of mPFC astrocytes post repopulation led to reappearance of depression-like behaviors. In adult male mice subjected to 14-day chronic restraint stress, a well-validated mouse model of depression, the number of mPFC astrocytes was reduced; however, the ability of mPFC astrocytes to repopulate after L-AAA-induced deletion was largely unaltered. Our study highlights a potentially beneficial role for repopulating astrocytes in depression and provides novel therapeutic insights into enhancing local mature astrocyte generation in depression.


Asunto(s)
Astrocitos , Depresión , Ratones Transgénicos , Corteza Prefrontal , Animales , Astrocitos/metabolismo , Corteza Prefrontal/metabolismo , Masculino , Depresión/genética , Depresión/patología , Femenino , Ratones Endogámicos C57BL , Ratones , Modelos Animales de Enfermedad , Restricción Física , Ácido 2-Aminoadípico , Estrés Psicológico/patología , Estrés Psicológico/metabolismo
3.
Apoptosis ; 29(3-4): 503-520, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38066391

RESUMEN

The hypomethylation agent decitabine (DAC), in combination with other apoptosis inducers, is considered a potential modality for cancer treatment. We investigated the mechanism underlying the combined cytotoxicity of DAC and YM155 in acute myeloid leukemia (AML) cells because of increasing evidence that YM155 induces apoptosis in cancer cells. Co-administration of DAC and YM155 resulted in synergistic cytotoxicity in AML U937 cells, which was characterized by the induction of apoptosis, NOXA-dependent degradation of MCL1 and survivin, and depolarization of mitochondria. Restoration of MCL1 or survivin expression attenuated DAC/YM155-induced U937 cell death. DAC initiated AKT and p38 MAPK phosphorylation in a Ca2+/ROS-dependent manner, thereby promoting autophagy-mediated degradation of ß-TrCP mRNA, leading to increased Sp1 expression. DAC-induced Sp1 expression associated with Ten-eleven-translocation (TET) dioxygenases and p300 was used to upregulate the expression of SLC35F2. Simultaneously, the activation of p38 MAPK induced by DAC, promoted CREB-mediated NOXA expression, resulting in survivin and MCL1 degradation. The synergistic cytotoxicity of DAC and YM155 in U937 cells was dependent on elevated SLC35F2 expression. Additionally, YM155 facilitated DAC-induced degradation of MCL1 and survivin. A similar mechanism explained DAC/YM155-mediated cytotoxicity in AML HL-60 cells. Our data demonstrated that the synergistic cytotoxicity of DAC and YM155 in AML cell lines U937 and HL-60 is dependent on AKT- and p38 MAPK-mediated upregulation of SLC35F2 and p38 MAPK-mediated degradation of survivin and MCL1. This indicates that a treatment regimen that amalgamates YM155 and DAC may be beneficial for AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas de Transporte de Membrana , Naftoquinonas , Humanos , Survivin/genética , Survivin/metabolismo , Apoptosis , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Decitabina/farmacología , Células U937 , Regulación hacia Arriba , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Naftoquinonas/farmacología , Línea Celular Tumoral
4.
BMC Plant Biol ; 24(1): 705, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054416

RESUMEN

BACKGROUND: Drought stress limits significantly the crop productivity. However, plants have evolved various strategies to cope with the drought conditions by adopting complex molecular, biochemical, and physiological mechanisms. Members of the nuclear factor Y (NF-Y) transcription factor (TF) family constitute one of the largest TF classes and are involved in plant responses to abiotic stresses. RESULTS: TaNF-YB2, a NY-YB subfamily gene in T. aestivum, was characterized in this study focusing on its role in mediating plant adaptation to drought stress. Yeast two-hybrid (Y-2 H), biomolecular fluoresence complementation (BiFC), and Co-immunoprecipitation (Co-IP) assays indicated that TaNF-YB2 interacts with the NF-YA member TaNF-YA7 and NF-YC family member TaNF-YC7, which constitutes a heterotrimer TaNF-YB2/TaNF-YA7/TaNF-YC7. The TaNF-YB2 transcripts are induced in roots and aerial tissues upon drought signaling; GUS histochemical staining analysis demonstrated the roles of cis-regulatory elements ABRE and MYB situated in TaNF-YB2 promoter to contribute to target gene response to drought. Transgene analysis on TaNF-YB2 confirmed its functions in regulating drought adaptation via modulating stomata movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis. TaNF-YB2 possessed the abilities in transcriptionally activating TaP5CS2, the P5CS family gene involving proline biosynthesis and TaSOD1, TaCAT5, and TaPOD5, the genes encoding antioxidant enzymes. Positive correlations were found between yield and the TaNF-YB2 transcripts in a core panel constituting 45 wheat cultivars under drought condition, in which two types of major haplotypes including TaNF-YB2-Hap1 and -Hap2 were included, with the former conferring more TaNF-YB2 transcripts and stronger plant drought tolerance. CONCLUSIONS: TaNF-YB2 is transcriptional response to drought stress. It is an essential regulator in mediating plant drought adaptation by modulating the physiological processes associated with stomatal movement, osmolyte biosynthesis, and reactive oxygen species (ROS) homeostasis, depending on its role in transcriptionally regulating stress response genes. Our research deepens the understanding of plant drought stress underlying NF-Y TF family and provides gene resource in efforts for molecular breeding the drought-tolerant cultivars in T. aestivum.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Triticum , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/fisiología , Triticum/metabolismo , Estrés Fisiológico/genética , Adaptación Fisiológica/genética , Genes de Plantas , Resistencia a la Sequía
5.
Am J Nephrol ; 55(1): 1-17, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37793348

RESUMEN

BACKGROUND: Mineralocorticoid receptor blockade could be a potential approach for the inhibition of chronic kidney disease (CKD) progression. The benefits and harms of different mineralocorticoid receptor antagonists (MRAs) in CKD are inconsistent. OBJECTIVES: The aim of the study was to summarize the benefits and harms of MRAs for CKD patients. METHODS: We searched MEDLINE, EMBASE, and the Cochrane databases for trials assessing the effects of MRAs on non-dialysis-dependent CKD populations. Treatment and adverse effects were summarized using meta-analysis. RESULTS: Fifty-three trials with 6 different MRAs involving 22,792 participants were included. Compared with the control group, MRAs reduced urinary albumin-to-creatinine ratio (weighted mean difference [WMD], -90.90 mg/g, 95% CI, -140.17 to -41.64 mg/g), 24-h urinary protein excretion (WMD, -0.20 g, 95% CI, -0.28 to -0.12 g), estimated glomerular filtration rate (eGFR) (WMD, -1.99 mL/min/1.73 m2, 95% CI, -3.28 to -0.70 mL/min/1.73 m2), chronic renal failure events (RR, 0.86, 95% CI, 0.79-0.93), and cardiovascular events (RR, 0.84, 95% CI, 0.77-0.92). MRAs increased the incidence of hyperkalemia (RR, 2.04, 95% CI, 1.73-2.40) and hypotension (RR, 1.80, 95% CI, 1.41-2.31). MRAs reduced the incidence of peripheral edema (RR, 0.65, 95% CI, 0.56-0.75) but not the risk of acute kidney injury (RR, 0.94, 95% CI, 0.79-1.13). Nonsteroidal MRAs (RR, 0.66, 95% CI, 0.57-0.75) but not steroidal MRAs (RR, 0.20, 95% CI, 0.02-1.68) significantly reduced the risk of peripheral edema. Steroidal MRAs (RR, 5.68, 95% CI, 1.26-25.67) but not nonsteroidal MRAs (RR, 0.52, 95% CI, 0.22-1.22) increased the risk of breast disorders. CONCLUSIONS: In the CKD patients, MRAs, particularly in combination with angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, reduced albuminuria/proteinuria, eGFR, and the incidence of chronic renal failure, cardiovascular and peripheral edema events, whereas increasing the incidence of hyperkalemia and hypotension, without the augment of acute kidney injury events. Nonsteroidal MRAs were superior in the reduction of more albuminuria with fewer peripheral edema events and without the augment of breast disorder events.


Asunto(s)
Lesión Renal Aguda , Hiperpotasemia , Hipotensión , Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Antagonistas de Receptores de Mineralocorticoides/efectos adversos , Hiperpotasemia/inducido químicamente , Hiperpotasemia/epidemiología , Albuminuria/inducido químicamente , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/inducido químicamente , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/epidemiología , Edema
6.
Artículo en Inglés | MEDLINE | ID: mdl-39129076

RESUMEN

BACKGROUND: Gallstone disease (GSD), nonalcoholic fatty liver disease (NAFLD), metabolic dysfunction-associated fatty liver disease (MAFLD), and metabolic syndrome (MetS) are common medical disorders worldwide. This study aimed to ascertain how NAFLD, MAFLD, MetS, and other factors affect the development of GSD, and how the GSD-associated factors influence patient recovery after laparoscopic cholecystectomy (LC). METHODS: We included 200 patients who were diagnosed with GSD and underwent LC between January 2017 and February 2022. A total of 200 subjects without GSD and "non-calculous causes" during the same period were also included as controls. We compared the metabolic disorder differences between GSD patients and controls. Furthermore, we sub-grouped patients based on the comorbidities of preoperative NAFLD, MAFLD, and MetS, and compared the impacts of these comorbidities on short-term post-LC functional recovery of the patients. RESULTS: The prevalence of NAFLD and MetS were higher in GSD patients (P < 0.05). Based on multivariate logistic regression analysis, hyperglycemia [odds ratio (OR) = 2.2, 95% confidence interval (CI): 1.4-3.4, P = 0.001] and low high-density lipoprotein cholesterol (HDL-C) level (OR = 1.8, 95% CI: 1.1-3.1, P = 0.048) were linked to GSD. NAFLD and MetS linked to liver enzymes after LC (P < 0.05). MetS also linked to the levels of inflammatory indicators after LC (P < 0.05). The obesity, hyperlipidemia, low HDL-C level, and hyperglycemia linked to liver enzymes after LC (P < 0.05). Hyperlipidemia, low HDL-C level, and hypertension linked to inflammation after LC (P < 0.05). CONCLUSIONS: The prevalence of GSD may be linked to NAFLD and MetS. Hyperglycemia and low HDL-C level were independent risk factors of GSD.

7.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 448-455, 2024 Jun 18.
Artículo en Zh | MEDLINE | ID: mdl-38864130

RESUMEN

OBJECTIVE: To explore the association between serum 25-hydroxyvitamin D [25(OH)D] and handgrip strength in middle-aged and elderly people in 5 cities of Western China. METHODS: Based on the data of a cross-sectional survey conducted in the 5 cities of Western China from February to July 2023, the relevant demographic characteristics of people were collected by questionnaire, handgrip strength was collected by physical examination, and serum 25(OH)D was detected by HPLC-MS/MS. The association between the serum 25(OH)D and handgrip strength was analyzed using Logistic regression and Chi-square test for between-group comparisons models. RESULTS: The prevalence of 25(OH)D deficiency and insufficiency among the middle-aged and elderly people in the 5 cities of Western China was 52.9% and 34.5%, respectively. The people who were older, female, and sampled in winter had lower serum 25(OH)D levels (P < 0.05). The prevalence of loss of handgrip strength among the middle-aged and elderly people was 25.3%. The prevalence of handgrip strength loss was higher in the aged 65-80 participants with 25(OH)D deficiency (45. 0%) than in those with 25(OH)D insufficiency (32.6%) and 25(OH)D sufficiency (20.6%). The highest prevalence of loss of handgrip strength was found in the aged 75-80 participants with 25(OH)D deficiency (62. 1%), followed by the 25(OH)D insufficient group (11.1%, P < 0.05). The study found that middle-aged and elderly people with 25(OH)D deficiency had a 1.4-fold increased risk of handgrip strength loss compared with those with 25(OH)D sufficiency (OR=2.403, 95%CI: 1.202-4.804, P=0.013). No significant association was found between 25(OH)D insufficiency and handgrip strength status in the middle-aged and elderly people. For every 5 µg/L increase in total serum 25(OH)D, the risk of handgrip strength loss reduced by 13.1% (OR=0.869, 95%CI: 0.768-0.982, P=0.025). For every 5 µg/L increase in serum 25(OH)D2, the risk of handgrip strength loss reduced by 24.1% (OR=0.759, 95%CI: 0.582-0.990, P=0.042). No significant association was found between serum 25(OH)D3 levels and the risk of handgrip strength loss. The risk of handgrip strength loss in middle-aged and elderly people was reduced by 25.2% for each incremental increase in the total serum 25(OH)D levels (deficient, insufficient and sufficient) (OR=0.748, 95%CI: 0.598-0.936, P=0.011). The risk of handgrip loss was reduced by 40.0% for each incremental increase in serum 25(OH)D levels in the aged 65-80 and aged 65-69 participants, and by 80.0% for each incremental increase in 25(OH)D levels in the aged 75-80 parti-cipants. CONCLUSION: Serum total 25(OH)D and 25(OH)D2 levels are associated with handgrip strength status in middle-aged and elderly people in the 5 cities of Western China.


Asunto(s)
Fuerza de la Mano , Deficiencia de Vitamina D , Vitamina D , Humanos , Femenino , Masculino , Vitamina D/análogos & derivados , Vitamina D/sangre , China/epidemiología , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/sangre , Persona de Mediana Edad , Anciano , Estudios Transversales , Prevalencia , Ciudades , Encuestas y Cuestionarios
8.
Am J Physiol Cell Physiol ; 324(1): C133-C141, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36440855

RESUMEN

Stress causes a rapid spike in norepinephrine (NE) levels, leading to gastrointestinal dysfunction. NE reduces the expression of tight junctions (TJs) and aggravates intestinal mucosal damage, but the regulatory mechanism is still unclear. The present study aimed to investigate the molecular mechanisms underlying the regulation of stress-associated duodenal hyperpermeability by NE. Fluorescein isothiocyanate-dextran permeability, transepithelial resistance, immunofluorescence, Western blot, and high-performance liquid chromatography analysis were used in water-immersion restraint stress (WIRS) rats in this study. The results indicate that the duodenal permeability, degradation of TJs, mucosal NE, and ß2-adrenergic receptor (ß2-AR) increased in WIRS rats. The duodenal intracellular cyclic adenosine monophosphate levels were decreased, whereas the expression of ß-arrestin 2 negatively regulates G protein-coupled receptors signaling, was significantly increased. Src recruitment was mediated by ß-arrestin; thus, the levels of Src kinase activation were enhanced in WIRS rats. NE depletion, ß2-AR, or ß-arrestin 2 blockade significantly decreased mucosal permeability and increased TJs expression, suggesting improved mucosal barrier function. Moreover, NE induced an increased duodenal permeability of normal rats with activated ß-arrestin 2/Src signaling, which was significantly inhibited by ß2-AR blockade. The present findings demonstrate that the enhanced NE induced an increased duodenal permeability in WIRS rats through the activated ß2-AR/ß-arrestin 2/Src pathway. This study provides novel insight into the molecular mechanism underlying the regulation of NE on the duodenal mucosal barrier and a new target for treating duodenal ulcers induced by stress.


Asunto(s)
Duodeno , Norepinefrina , Animales , Ratas , Arrestina beta 2/genética , Arrestina beta 2/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal , Agua/metabolismo , Estrés Fisiológico , Duodeno/patología , Duodeno/fisiología
9.
Anal Chem ; 95(19): 7468-7474, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37134200

RESUMEN

Intercellular signal transduction plays an important role in the regulation of biological activities. Herein, a Transwell chamber-based two-layer device combined with scanning electrochemical microscopy (SECM) technology has been proposed for in situ investigation of intercellular signal transduction. The cells in the device were cultured on two layers: the lower layer was for signaling cells, and the upper layer was for signal-receiving cells. The extracellular pH (pHe) and ROS (reactive oxygen species, ROSe) were in situ monitored by SECM potentiometric mode and SECM-MPSW (multipotential step waveform), respectively. When the signaling cells, including MCF-7, HeLa, and HFF cells, were electrically stimulated, the ROS release of the signal-receiving cells was promoted. By detecting the pH at the cell surface, it was found that more H+ generated by the signaling cells and two cell layers at a shorter distance could both cause the signal-receiving cells to release more ROS, revealing that H+ is one of the signaling molecules of intercellular communication. This SECM-based in situ monitoring strategy provides an effective way to investigate intercellular signal transduction and explore the corresponding mechanism.


Asunto(s)
Comunicación Celular , Transducción de Señal , Humanos , Especies Reactivas de Oxígeno , Microscopía Electroquímica de Rastreo , Concentración de Iones de Hidrógeno
10.
Proc Biol Sci ; 290(1990): 20221658, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629113

RESUMEN

Human-induced biodiversity loss negatively affects ecosystem function, but the interactive effects of biodiversity change across trophic levels remain insufficiently understood. We sampled arboreal spiders and lepidopteran larvae across seasons in 2 years in a subtropical tree diversity experiment, and then disentangled the links between tree diversity and arthropod predator diversity by deconstructing the pathways among multiple components of diversity (taxonomic, phylogenetic and functional) with structural equation models. We found that herbivores were major mediators of plant species richness effects on abundance, species richness, functional and phylogenetic diversity of predators, while phylogenetic, functional and structural diversity of trees were also important mediators of this process. However, the strength and direction differed between functional, structural and phylogenetic diversity effects, indicating different underlying mechanisms for predator community assembly. Abundance and multiple diversity components of predators were consistently affected by tree functional diversity, indicating that the variation in structure and environment caused by plant functional composition might play key roles in predator community assembly. Our study highlights the importance of an integrated approach based on multiple biodiversity components in understanding the consequences of biodiversity loss in multitrophic communities.


Asunto(s)
Artrópodos , Arañas , Animales , Humanos , Ecosistema , Filogenia , Biodiversidad , Plantas
11.
Toxicol Appl Pharmacol ; 474: 116625, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451322

RESUMEN

Accumulating evidence indicates that the anticancer activity of acridine derivatives is mediated through the regulation of anti-apoptotic and pro-apoptotic BCL2 protein expression. Therefore, we investigated whether the cytotoxicity of amsacrine with an acridine structural scaffold in human chronic myeloid leukemia (CML) K562 cells was mediated by BCL2 family proteins. Amsacrine induced apoptosis, mitochondrial depolarization, and BCL2L1 (also known as BCL-XL) downregulation in K562 cells. BCL2L1 overexpression inhibited amsacrine-induced cell death and mitochondrial depolarization. Amsacrine treatment triggered SIDT2-mediated miR-25 downregulation, leading to increased NOX4-mediated ROS production. ROS-mediated inactivation of ERK triggered miR-22 expression, leading to increased HuR mRNA decay. As HuR is involved in stabilizing BCL2L1 mRNA, downregulation of BCL2L1 was noted in K562 cells after amsacrine treatment. In contrast, amsacrine-induced BCL2L1 downregulation was alleviated by restoring ERK phosphorylation and HuR expression. Altogether, the results of this study suggest that amsacrine triggers apoptosis in K562 cells by inhibiting BCL2L1 expression through the SIDT2/NOX4/ERK-mediated downregulation of HuR. Furthermore, a similar pathway also explains the cytotoxicity of amsacrine in CML MEG-01 and KU812 cells.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , MicroARNs , Proteínas de Transporte de Nucleótidos , Humanos , Amsacrina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Proteína bcl-X/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Células K562 , MicroARNs/genética , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo
12.
Mol Psychiatry ; 27(2): 896-906, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34697452

RESUMEN

Neuroplasticity in the medial prefrontal cortex (mPFC) is essential for fear extinction, the process of which forms the basis of the general therapeutic process used to treat human fear disorders. However, the underlying molecules and local circuit elements controlling neuronal activity and concomitant induction of plasticity remain unclear. Here we show that sustained plasticity of the parvalbumin (PV) neuronal network in the infralimbic (IL) mPFC is required for fear extinction in adult male mice and identify the involvement of neuregulin 1-ErbB4 signalling in PV network plasticity-mediated fear extinction. Moreover, regulation of fear extinction by basal medial amygdala (BMA)-projecting IL neurons is dependent on PV network configuration. Together, these results uncover the local molecular circuit mechanisms underlying mPFC-mediated top-down control of fear extinction, suggesting alterative therapeutic approaches to treat fear disorders.


Asunto(s)
Extinción Psicológica , Miedo , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Masculino , Ratones , Neurregulina-1 , Plasticidad Neuronal/fisiología , Parvalbúminas , Corteza Prefrontal/fisiología , Receptor ErbB-4
13.
J Anim Ecol ; 92(2): 442-453, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36507573

RESUMEN

Global biodiversity decline and its cascading effects through trophic interactions pose a severe threat to human society. Establishing the impacts of biodiversity decline requires a more thorough understanding of multi-trophic interactions and, more specifically, the effects that loss of diversity in primary producers has on multi-trophic community assembly. Within a synthetic conceptual framework for multi-trophic beta-diversity, we tested a series of hypotheses on neutral and niche-based bottom-up processes in assembling herbivore and carnivore communities in a subtropical forest using linear models, hieratical variance partitioning based on linear mixed-effects models (LMMs) and simulation. We found that the observed taxonomic, phylogenetic and functional beta-diversity of both herbivorous caterpillars and carnivorous spiders were significantly and positively related to tree dissimilarity. Linear models and variance partitioning for LMMs jointly suggested that as a result of bottom-up effects, producer dissimilarities were predominant in structuring consumer dissimilarity, the strength of which highly depended on the trophic dependencies on producers, the diversity facet examined, and data quality. Importantly, linear models for standardized beta-diversities against producer dissimilarities implied a transition between niche-based processes such as environmental filtering and competitive exclusion, which supports the role of bottom-up effect in determining consumer community assembly. These findings enrich our mechanistic understanding of the 'Diversity Begets Diversity' hypothesis and the complexity of higher-trophic community assembly, which is fundamental for sustainable biodiversity conservation and ecosystem management.


Asunto(s)
Ecosistema , Herbivoria , Humanos , Animales , Filogenia , Biodiversidad , Bosques
14.
Cell Biol Toxicol ; 39(5): 2207-2225, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35302183

RESUMEN

Our previous studies indicated that the benzene metabolite hydroquinone (HQ) evokes the ROS/p38 MAPK/protein phosphatase 2A/tristetraprolin axis, leading to increased TNF-α expression in human acute myeloid leukemia cell lines U937 and HL-60. In this study, we aimed to identify the upstream pathway involved in ROS-mediated TNF-α expression. HQ treatment increased SIDT2 expression, which subsequently decreased miR-25 and SIRT3 expression in U937 cells. Notably, miR-25 downregulation promoted SIDT2 expression in HQ-treated U937 cells. SIDT2 induced lysosomal degradation of SIRT3 mRNA, but inhibited miR-25 expression through a lysosome-independent pathway. MiR-25 inhibition reduced NOX4 mRNA turnover, resulting in increased NOX4 protein levels. NOX4 induces mitochondrial ROS production and HuR downregulation. Restoration of HuR expression increased SIRT3 expression, suggesting that NOX4-mediated HuR downregulation promotes SIDT2-mediated degradation of SIRT3 mRNA. Inhibition of NOX4 or SIRT3 overexpression abolished HQ-induced ROS production, thereby abolishing TNF-α upregulation. Overall, these results indicate that SIDT2 regulates the miR-25/NOX4/HuR axis and SIRT3 mRNA destabilization, leading to ROS-mediated TNF-α upregulation in HQ-treated U937 cells. HQ-induced increase in TNF-α expression in HL-60 cells was also mediated through a similar pathway.


Asunto(s)
Leucemia , MicroARNs , Proteínas de Transporte de Nucleótidos , Sirtuina 3 , Humanos , Factor de Necrosis Tumoral alfa , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Hidroquinonas/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Leucemia/tratamiento farmacológico , Leucemia/genética , Leucemia/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo
15.
Oecologia ; 203(1-2): 205-218, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37831151

RESUMEN

There are many factors known to drive species turnover, although the mechanisms by which these operate are less clear. Based on comprehensive datasets from the largest tree diversity experiment worldwide (BEF-China), we used shared herbivore species (zeta diversity) and multi-site generalized dissimilarity modelling to investigate the patterns and determinants of species turnover of Lepidoptera herbivores among study plots across a gradient in tree species richness. We found that zeta diversity declined sharply with an increasing number of study plots, with complete changes in caterpillar species composition observed even at the fine spatial scale of our study. Plant community characteristics rather than abiotic factors were found to play key roles in driving caterpillar compositional turnover, although these effects varied with an increasing number of study plots considered, due to the varying contributions of rare and common species to compositional turnover. Our study reveals details of the impact of phylogeny- and trait-mediated processes of trees on herbivore compositional turnover, which has implications for forest management and conservation and shows potential avenues for maintenance of heterogeneity in herbivore communities.


Asunto(s)
Herbivoria , Árboles , Biodiversidad , Bosques , Plantas
16.
Int J Geriatr Psychiatry ; 38(9): e5994, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37655500

RESUMEN

OBJECTIVES: We aimed to compare the effectiveness of interventions in cognitive function and frailty status and rank these interventions. METHODS: Data Sources-We searched PubMed, Embase, CINAHL, PsycINFO, Web of Science, Cochrane Library, Central Register of Controlled Trials (CENTRAL), CNKI, Wanfang, VIP and Google scholar. Data synthesis-The risk of bias was assessed using the Cochrane risk bias assessment tool. Statistical heterogeneity was assessed using the Chi-square test and quantified by I2 . The results were pooled using the standardized mean difference (SMD). The rank probability for each intervention was calculated using the surface under the cumulative ranking curve (SUCRA). Additionally, the quality of the evidence was evaluated using the GRADE approach. RESULTS: A total of 10 randomized controlled trials (RCTs) involving 1110 patients were included in our analysis. The network map of cognitive function comprised 9 RCTs with 1347 participants, examining eight different interventions. Nutritional support (SUCRA = 99.9%, SMD = 3.02, 95% CI: 2.53, 3.51) may be the most effective intervention to improve cognitive function. The network map of frailty (including 9 RCTs with 1017 participants and 9 interventions) suggested that multicomponent exercises (SUCRA = 96.4%, SMD = -5.10, 95% CI: -5.96, -4.23) tended to have a greater effect. CONCLUSIONS: Community-based multicomponent exercises have shown significant benefits for improving cognitive function and frailty status in older adults, with moderate certainty. For hospitalized older patients with Cognitive frailty (CF), current evidence suggests that nutritional support yields the most improvement. Additionally, aerobic exercise and dual-task training have proven effective in managing CF. Further studies are needed to validate these preliminary findings and exploring more accessible and effective physical and cognitive interventions to prevent CF in aging.


Asunto(s)
Fragilidad , Anciano , Humanos , Envejecimiento , Cognición , Fragilidad/terapia , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto
17.
Zhonghua Nan Ke Xue ; 29(6): 552-556, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-38602730

RESUMEN

Sex-determining region Y-box transcription factor 9(SOX9)is essential for prostate development. The dysregulation of SOX9 not only affects the occurrence of Prostate cancer (PCa), but also plays a key role in castration-resistant prostate cancer (CRPC). However, the mechanism of SOX9 affecting the evolution of PCa is still unclear. This paper mainly reviews the molecular mechanism and signal pathway related to the occurrence and development of SOX9 and PCa. SOX9 gene may be an important new biomarker in the development of PCa,providing new ideas for clinical diagnosis and treatment.


Asunto(s)
Neoplasias de la Próstata , Factor de Transcripción SOX9 , Humanos , Masculino , Neoplasias de la Próstata/genética , Factor de Transcripción SOX9/genética
18.
Anal Chem ; 94(9): 4078-4086, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35213803

RESUMEN

The expression of potassium channels can be related to the occurrence and development of tumors. Their change would affect K+ outflow. Thus, in situ monitoring of extracellular K+ shows a great significance. Herein, the dual-functional K+ ion-selective electrode as the scanning electrochemical microscopy (SECM) tip (K+-ISE SECM tip) has been developed for in situ monitoring of the extracellular K+. Based on multi-wall carbon nanotubes as a transduction layer, the K+-ISE SECM tip realizes both the plotting of approach curves to position the tip for in situ detection and the recording of potential responses. It shows a near Nernstian response, good selectivity, and excellent stability. Based on these characteristics, it was used to in situ monitor K+ concentrations ([K+]o) of three breast cancer cell lines (MCF-7, MDA-MB-231, and SK-BR-3 cells) at 3 µm above the cell, and [K+]o of MDA-MB-231 cells show the highest value, followed by MCF-7 cells and SK-BR-3 cells. K+ outflow induced by electrical stimulation or pH changes of the culture environment (Δ[K+]o) was further determined, and the possible mechanism of K+ outflow was investigated with 4-aminopyridin (4-AP). MCF-7 cells present the largest value of Δ[K+]o, followed by MDA-MB-231 cells and SK-BR-3 cells at all the stimulation potentials, and pH 6.50 shows the greatest impact on K+ outflow of the three cell lines. The pretreatment of 4-AP changed K+ outflow, probably due to the regulation of voltage-gated channels. These findings provide insight into a deep understanding of the microenvironment influence on K+ outflow, thereby reflecting the possible mechanism of potassium channels.


Asunto(s)
Nanotubos de Carbono , Potasio , Iones , Microscopía Electroquímica de Rastreo , Potenciometría
19.
Toxicol Appl Pharmacol ; 435: 115847, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34963561

RESUMEN

Although some studies have hinted at the therapeutic potential of daunorubicin (DNR) in chronic myeloid leukemia (CML), the mechanism by which DNR induces CML cell death is unclear. Therefore, this study aimed to investigate DNR-induced cell death signaling pathways in CML cell lines K562 and KU812. DNR-triggered apoptosis in K562 cells was characterized by inhibition of MCL1 expression, while restoration of MCL1 expression protected K562 cells from DNR-mediated cytotoxicity. In addition, DNR induced NOX4-dependent ROS production, leading to the activation of p38 MAPK and inactivation of Akt and ERK. Activated p38 MAPK stimulated protein phosphatase 2A-dependent dephosphorylation of CREB. Since Akt-mediated activation of ERK reduced ß-TrCP mRNA stability, the inactivation of Akt-ERK axis increased ß-TrCP expression, which in turn promoted proteasomal degradation of Sp1. Inhibition of CREB phosphorylation and Sp1 expression simultaneously reduced MCL1 transcription and protein expression. DNR-induced MCL1 suppression was not reliant on its ability to induce DNA damage. In addition, DNR induced the expression of drug exporter ABCB1 in K562 cells through the p38 MAPK/NFκB-mediated pathway, while imatinib or ABT-199 inhibited the DNR-induced effect. The combination of imatinib or ABT-199 with DNR showed synergistic cytotoxicity in K562 cells by increasing intracellular DNR retention. Cumulatively, our data indicate that DNR induces MCL1 downregulation in K562 cells by promoting p38 MAPK-mediated dephosphorylation of CREB and inhibiting the Akt-ERK axis-mediated Sp1 protein stabilization. Furthermore, experimental evidence indicates that DNR-induced death of KU812 cells occurs through a similar pathway.


Asunto(s)
Antibióticos Antineoplásicos/uso terapéutico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Daunorrubicina/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/biosíntesis , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , FN-kappa B/metabolismo , Factor de Transcripción Sp1/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Mesilato de Imatinib/farmacología , Células K562 , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , NADPH Oxidasa 4/metabolismo , FN-kappa B/genética , Especies Reactivas de Oxígeno/metabolismo , Sulfonamidas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Arch Biochem Biophys ; 728: 109371, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35921901

RESUMEN

In this study, we investigated whether modification of the carboxyl group with semicarbazide-enabled myoglobin (Mb) exhibits membrane-perturbing activity in physiological solutions. Mass spectrometry analysis showed that semicarbazide molecules were coupled to 19 of the 22 carboxyl groups in semicarbazide-modified Mb (SEM-Mb). Measurements of the absorption and circular dichroism spectra indicated that SEM-Mb lost its heme group and reduced the content of the α-helix structure in Mb. The microenvironment surrounding Trp residues in Mb changes after blocking negatively charged residues, as shown by fluorescence quenching studies. The results of the trifluoroethanol-induced structural transition indicated that SEM-Mb had higher structural flexibility than that of Mb. SEM-Mb, but not Mb, induced the permeability of bilayer membranes. Both proteins showed similar lipid-binding affinities. The conformation of SEM-Mb and Mb changed upon binding to lipid vesicles or a membrane-mimicking environment composed of SDS micelles, suggesting that membrane interaction modes differ. Unlike lipid-bound Mb, Trp residues in lipid-bound SEM-Mb are located at the protein-lipid interface. Altogether, our data indicate that modifying negatively charged groups relieves the structural constraints in Mb, consequently switching Mb structure to an active conformation that exhibits membrane-permeabilizing activity.


Asunto(s)
Mioglobina , Semicarbacidas , Dicroismo Circular , Lípidos , Conformación Proteica , Conformación Proteica en Hélice alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA