Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Small ; 17(26): e2101754, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33988898

RESUMEN

The directed self-assembly of electronic circuits using functional metallic inks has attracted intensive attention because of its high compatibility with extensive applications ranging from soft printed circuits to wearable devices. However, the typical resolution of conventional self-assembly technologies is not sufficient for practical applications in the rapidly evolving additively manufactured electronics (AMEs) market. Herein, an ultrahigh-resolution self-assembly strategy is reported based on a dual-surface-architectonics (DSA) process. Inspired by the Tokay gecko, the approach is to endow submicrometer-scale surface regions with strong adhesion force toward metallic inks via a series of photoirradiation and chemical polarization treatments. The prepared DSA surface enables the directed self-assembly of electronic circuits with unprecedented 600 nm resolution, suppresses the coffee-ring effect, and results in a reliable conductivity of 14.1 ± 0.6 µΩ cm. Furthermore, the DSA process enables the layer-by-layer fabrication of fully printed organic thin-film transistors with a short channel length of 1 µm, which results in a large on-off ratio of 106 and a high field-effect mobility of 0.5 cm2  V-1  s-1 .


Asunto(s)
Transistores Electrónicos , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Electrónica , Tinta
2.
Inorg Chem ; 58(5): 3374-3381, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30789711

RESUMEN

Copper nanowires (CuNWs) are considered a promising alternative to indium tin oxide due to their cost-effectiveness as well as high conductivity and transparency. However, the practical applications of copper-based conductors are greatly limited due to their rapid oxidation in atmosphere. Herein, a facile adsorption and decomposition process is developed for galvanic replacement free and large-scale synthesis of highly stable Cu@Ag core-shell nanowires. First, Ag-amine complex ([Ag(NH2R)2]+) as silver source adsorbs on CuNWs surface, and Cu@Ag-amine complex core-shell structure is formed. After that, Ag-amine complex is easily decomposed to pure Ag shell through a simple thermal annealing under air. By adjusting the concentration of Ag-aminein CuNWs solution, Cu@Ag core-shell nanowires with different thickness of silver shell can be easily obtained. The obtained core-shell nanowires exhibit high stability for at least 500 h at high temperature (140 °C) and high humidity (85 °C, 85% RH) due to the protection of Ag shell. More importantly, the conductivity and transparency of Cu@Ag nanowires-based conductors is similar to that of pure CuNWs. The large-scale and facile synthesis of Cu@Ag core-shell nanowires provides a new method to prepare stable metallic core-shell nanowires.

3.
Nanotechnology ; 29(43): 435701, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30047924

RESUMEN

The silver nanowire (AgNW) transparent electrode is one of the promising components for flexible electronics due to its high electrical and thermal conductivity, optical transparency and flexibility. However, the application of the AgNW electrode with an improved performance is generally limited by its poor long-term stability. As the name suggests, the transparent electrode is usually exposed to visible light in various applications. Unlike other electrode materials, AgNWs show unique and complicated behavior under long-term visible light illumination. In this study, the comprehensive effect of visible light irradiation on the AgNW transparent electrode is initially investigated in detail. Light irradiation induces the migration of silver to enhance the nanowire contacts while also leading to the generation and growth of particles and diameter loss in the nanowire. Light irradiation accelerates the sulfidation and oxidation of the AgNWs as well, resulting in the emergence of degradation products on the nanowire surface. All these effects influence the sheet resistance of the AgNW electrode during light illumination. The light-induced change of sheet resistance also relates to the nanowire concentration due to the sensitivity of the wire-wire contact resistance near the percolation threshold. It is believed that this work will be a valuable reference for the design, processing and application of transparent electrodes used in numerous optoelectronic devices.

4.
Nanotechnology ; 28(1): 01LT01, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27893449

RESUMEN

A biaxially wave-shaped polydimethylsiloxane (PDMS) surface was developed simply by using a taro leaf as the template. The resulting leaf-templated PDMS (L-PDMS) possesses a micro-sized curved interface structure, which is greatly beneficial for the exact embedding of a silver nanowire (AgNW) network conductive film covering the L-PDMS surface. The intrinsically curved AgNW/L-PDMS film surface, without any dangling nanowire, could prevent the fracture of AgNWs due to stretching stress even after cyclic stretching. More importantly, it also exhibited a biaxial stretchability, which showed ultra-stable resistance after continuous stretching for 100 cycles each in X- and Y-directions. This biaxially stretchable AgNW/L-PDMS film could extend the application fields in stretchable electronics.

5.
Nanotechnology ; 27(45): 45LT02, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27713190

RESUMEN

Silver nanowires (AgNWs) are excellent candidate electrode materials in next-generation wearable devices due to their high flexibility and high conductivity. In particular, patterning techniques for AgNWs electrode manufacture are very important in the roll-to-roll printing process to achieve high throughput and special performance production. It is also essential to realize a non-contact mode patterning for devices in order to keep the pre-patterned components away from mechanical damages. Here, we report a successful non-contact patterning of AgNWs-based stretchable and transparent electrodes by laser-induced forward transfer (LIFT) technique. The technique was used to fabricate a 100% stretchable electrode with a width of 200 µm and electrical resistivity 10-4 Ωcm. Experiments conducted integrating the stretchable electrode on rubber substrate in which LED was pre-fabricated showed design flexibility resulting from non-contact printing. Further, a patterned transparent electrode showed over 80% in optical transmittance and less than 100 Ω sq-1 in sheet resistance by the optimized LIFT technique.

6.
Phys Chem Chem Phys ; 17(46): 31110-6, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26536570

RESUMEN

Copper nanowire transparent electrodes have received increasing interest due to the low price and nearly equal electrical conductivity compared with other TEs based on silver nanowires and indium tin oxide (ITO). However, a post-treatment at high temperature in an inert atmosphere or a vacuum environment was necessary to improve the conductivity of Cu NW TEs due to the easy oxidation of copper in air atmosphere, which greatly cancelled out the low price advantage of Cu NWs. Here, a high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate these Cu NWs into a highly conductive network at room temperature in air. The strong light absorption capacity of Cu NWs enabled the welding of the nanowires at contact spots, as well as the removal of the thin layer of residual organic compounds, oxides and hydroxide of copper even in air. The Cu NW TE with a sheet resistance of 22.9 Ohm sq(-1) and a transparency of 81.8% at 550 nm has been successfully fabricated within only 6 milliseconds exposure treatment, which is superior to other films treated at high temperature in a hydrogen atmosphere. The HIPL process was simple, convenient and fast to fabricate easily oxidized Cu NW TEs in large scale in an air atmosphere, which will largely extend the application of cheap Cu NW TEs.

7.
Nanotechnology ; 25(48): 485705, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25397618

RESUMEN

Highly ordered 'Chrysanthemum petal' arrangements of silver nano wires were fabricated in a biodegradable polymer of polyvinyl alcohol using a simple one-step blending method without any template. The degree of the arrangement increased with the decreasing content of polyvinyl alcohol. The mechanism for the formation of these 'Chrysanthemum petal' arrangements was discussed specifically. These 'Chrysanthemum petal' arrangements will be helpful to increase the electrical conductivity of silver nano wires films.

8.
Langmuir ; 29(35): 11192-7, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23919600

RESUMEN

We formulate copper salt (copper formate/acetate/oleate) precursor inks for photonic sintering using high-intensity pulsed light (HIPL) based on the ink's light absorption ability. The inks can be developed through controllable crystal field splitting states (i.e., the ligand weights and their coordination around the metal centers). The inks' light absorption properties are extremely sensitive to the carbon chain lengths of the ligands, and the ink colors can drastically change. From the relationship between the ratios of C/Cu and the required sintering energies, it is possible to ascertain that the integral absorbance coefficients are strongly correlated with the photonic sintering behavior. These results suggest that the ink absorbance properties are the most important factors in photosintering. The wires formed by sintered copper formate complex ink via the HIPL method showed good electronic conduction, achieving a low resistivity of 5.6 × 10(-5) Ω cm. However, the resistivity of the wires increased with increasing contains carbon chain length of the inks, suggesting that large amounts of residual carbon have negative effects on both the wire's surface morphology and the electrical conductivity. We find in this study that high light absorptivity and low carbon inks would lead to a lower environmental load in future by reducing both energy usage and carbon oxide gas emissions.

9.
Langmuir ; 28(25): 9298-302, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22642559

RESUMEN

To shore up the demand of transparent electrodes for wide applications such as organic light emitting diodes and solar cells, transparent electrodes are required as an alternative for indium tin oxide electrodes. Herein the self-assembly method with a bubble template paves the way for cost-effective fabrication of transparent electrodes with high conductivity and transparency using self-assembly of silver nanowires (AgNWs) in a bubble template. AgNWs were first dispersed in water that was bubbled with a surfactant and a thickening agent. Furthermore, these AgNWs were assembled by lining along the bubble ridges. When the bubbles containing the AgNWs were sandwiched between two glass substrates, the bubble ridges including the AgNWs formed continuous polygonal structures. Mesh structures were formed on both glass substrates after air-drying. The mesh structures evolved into mesh transparent electrodes following heat-treatment. The AgNW mesh structure exhibited a low sheet resistance of 6.2 Ω/square with a transparency of 84% after heat treatment at 200 °C for 20 min. The performance is higher than that of transparent electrodes with random networks of AgNWs. Furthermore, the conductivity and transparency of the mesh transparent electrodes can be adjusted by changing the amount of the AgNW suspension and the space between the two glass substrates.


Asunto(s)
Nanocables/química , Plata/química , Conductividad Eléctrica , Electrodos , Vidrio/química , Calor
10.
ACS Appl Mater Interfaces ; 11(2): 2140-2148, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30569697

RESUMEN

Although stretchable transparent conductors, stemmed from the strategies of both conductive composite and structural design of nonstretchable conductors, have been extensively studied, these conductors either suffer from low stretchability or require a complex fabrication process, which drastically limits their practical applications. Here, we propose a novel strategy combining the design of substrates and a simple template-assisted transfer printing process to fabricate three-dimensional (3D) transparent conductors. The strategy not only eliminates the complex and costly fabrication processes but it also endows conductors with high stretchability and long-term stability, thanks to the controllable strain distribution as well as the seamless connection between the conductor layer and the substrate. These newly designed 3D conductors achieve a low sheet resistance of 1.0 Ω/sq with a high transmittance of above 85% and remain stable without obvious resistance change during 1000 stretching-relaxation cycles until 60% strain, which are superior to most reported conductors. A large-area stretchable heater based on the 3D conductor realizes the temperature fluctuation below 10% even under a large strain, thus showing huge application prospects in the field of wearable healthcare electronics. The simple solution-processed fabrication method and high performance such as stretchability and low resistance change over a large strain range promote the practical applications of these newly designed 3D conductors.

11.
ACS Appl Mater Interfaces ; 11(3): 3231-3240, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30588790

RESUMEN

Stretchable wiring and stretchable bonding between a rigid chip/component and a stretchable substrate are two key factors for stretchable electronics. In this study, a highly conductive stretchable paste has been developed with commercial Ag microflakes and poly(dimethylsiloxane), which can be used to fabricate stretchable wirings and bondings under a low curing temperature of 100 °C with printing method. Herein, recoverabilities as to recovery time and recovery resistance of the wirings are defined and discussed. The effect of Ag composition and the tensile strain rate on the recoverability of the wirings are also examined. The wiring with a low resistivity of 8.7 × 10-5 Ω cm shows much better recoverability than nanowire-based wirings due to the flake nature of the Ag particles. When stretched to 50 and 100% of strain, the resistance of the patterned wiring increases by only 10 and 110%, respectively. Moreover, the resistance of the wiring during 20% tensile cyclic test remains within 1.1 times even after 1000 cycles, thus demonstrating significant durability. The paste was utilized to fabricate conductive tracks and stretchable bondings to assemble a rigid chip to fabricate a stretchable demo. When stretched to 50% of strain, resistance of the wiring was increased by 90%. It is anticipated that the newly developed paste will be used to fabricate various stretchable wirings, bondings, and packaging structures by a simple printing process, thus enabling mass production of stretchable electronic devices.

12.
RSC Adv ; 8(4): 2109-2115, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35542590

RESUMEN

Copper nanowire (CuNW) based flexible transparent electrodes have been extensively investigated due to their outstanding performances and low price. However, commonly used methods for processing CuNW transparent electrodes such as thermal annealing and photonic sintering inevitably damage the flexible substrates leading to low transmittance. Herein, a surface coating layer was demonstrated to protect the heat-sensitive polyethylene terephthalate (PET) polymer from being destroyed by the instantaneous high temperature during the photonic sintering process. The stable ceramic surface coating layer avoided the direct exposure of PET to intense light, further reduced the heat releasing to the bottom part of the PET, protecting the flexible PET base from destruction and ensuring high transparency for the CuNW transparent electrodes. A CuNW transparent electrode on surface coated PET (C-PET) substrates with a sheet resistance of 33 Ohm sq-1 and high transmittance of 82% has been successfully fabricated by the photonic sintering method using light intensity of 557 mJ cm-2 within several seconds in ambient conditions. The surface coating layers open a novel method to optimize the rapid photonic sintering technique for processing metal nanomaterials on heat-sensitive substrates.

13.
Nanomicro Lett ; 10(1): 1, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30393650

RESUMEN

The requirement of energy-storage equipment needs to develop the lithium ion battery (LIB) with high electrochemical performance. The surface modification of commercial LiFePO4 (LFP) by utilizing zeolitic imidazolate frameworks-8 (ZIF-8) offers new possibilities for commercial LFP with high electrochemical performances. In this work, the carbonized ZIF-8 (CZIF-8) was coated on the surface of LFP particles by the in situ growth and carbonization of ZIF-8. Transmission electron microscopy indicates that there is an approximate 10 nm coating layer with metal zinc and graphite-like carbon on the surface of LFP/CZIF-8 sample. The N2 adsorption and desorption isotherm suggests that the coating layer has uniform and simple connecting mesopores. As cathode material, LFP/CZIF-8 cathode-active material delivers a discharge specific capacity of 159.3 mAh g-1 at 0.1C and a discharge specific energy of 141.7 mWh g-1 after 200 cycles at 5.0C (the retention rate is approximate 99%). These results are attributed to the synergy improvement of the conductivity, the lithium ion diffusion coefficient, and the degree of freedom for volume change of LFP/CZIF-8 cathode. This work will contribute to the improvement of the cathode materials of commercial LIB.

14.
Nanoscale ; 10(11): 5254-5263, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29498383

RESUMEN

Cu-Ag complex inks are developed for printing conductive tracks of low cost, high stability, and high conductivity on heat-sensitive substrates such as polyethylene terephthalate (PET) substrates. The inks show an obvious self-catalyzed characteristic due to the in situ formation of fresh metal nanoparticles which promote rapid decomposition and sintering of the inks at a low temperature below 100 °C. The temperature is 40-60 °C lower than those of general Cu complex inks and 100-120 °C lower than those of general Cu/Ag particle inks. Highly conductive Cu-Ag tracks of 2.80 × 10-5 Ω cm and 6.40 × 10-5 Ω cm have been easily realized at 100 °C and 80 °C, respectively. In addition, the printed Cu-based tracks not only show high oxidation resistance at high temperatures of up to 140 °C (the maximum tolerable temperature of current PET substrate) but also show excellent stability at high humidity of 85% because of the very uniform Cu-Ag hybrid structure. The printable tracks exhibit great potential application in various wearable devices fabricated on textiles, papers, and other heat-sensitive substrates.

15.
RSC Adv ; 8(71): 40740-40747, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-35557918

RESUMEN

Topographical patterns are widely applied in many manufacturing areas due to the unique role in modifying performance related to physical, chemical and biological fundamentals. The patterns are usually realized by buckling or wrinkling, self-assembly or epitaxy, and lithography techniques. However, the combination of satisfactory controllability, ridge robustness, cost and dimensional precision is still difficult to achieve by any of the strategies above. A novel, simple and low-cost nanopatterning technique named "photodegradation copying method" with high technological flexibility has been initially proposed in this study. As a perfect example, a nanoridge-patterned surface has been successfully realized on a polymeric film thanks to the selective photodegradation of polymer and the shielding effect of silver nanowire (AgNW) networks. Roughness, wettability and transmittance of the polymeric film became simply and effectively controllable by adjusting the photodegradation time or the size and distribution of AgNWs. In addition, the ridge-patterned film could also be employed as a substrate in transfer printing for more flexible devices. Various topographical nanopatterns are expected to be simply realized by the photocopying method, just replacing nanowires with other masks like nanodisks, nanocubes, nanotriangles, and so on. This promising photocopying technique is believed to play an important role in the development of topographical nanopatterns, and enable more intriguing applications simply, flexibly and inexpensively.

16.
ACS Appl Mater Interfaces ; 10(42): 36128-36135, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30256082

RESUMEN

In industrial manufacturing, alloying can contribute to the passivation of active metals and markedly improve their corrosion resistance. This inspires us to solve the current critical problem of Ag nanowires (Ag NWs) that have poor stability against chemical and electrochemical corrosion. These problems have seriously limited the applications of Ag NWs in optoelectronic devices where they are used for transparent conductive electrodes. Here, a kind of transparent conductive electrode based on Ag@Pt alloy-walled hollow nanowires (Ag@Pt AHNWs) is successfully fabricated by introducing 12 mol % Pt into long Ag NWs to form Ag@Pt alloy. The as-synthesized electrodes exhibit better optical transmittance (82% at the wavelength of 550 nm) under high electrical conductivity (28.73 Ω/sq-1), high thermal stability up to 400 °C for 11 h, and remarkable mechanical flexibility (remaining stable after 5000 cycles bending), as well as high resistance against chemical and electrochemical corrosion. The Ag@Pt AHNWs electrodes are further applied in a primary bifunctional polyaniline electrochemical device, and the device shows promising flexibility, noticeable multicolor performances, and high specific capacitance because of the remarkable mechanical flexibility and electrochemical stability of Ag@Pt AHNWs. This work will provide an optional approach for the preparation of other metal nanomaterial electrodes with high stability.

17.
ACS Appl Mater Interfaces ; 9(29): 24711-24721, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28675295

RESUMEN

Printable and flexible Cu-Ag alloy electrodes with high conductivity and ultrahigh oxidation resistance have been successfully fabricated by using a newly developed Cu-Ag hybrid ink and a simple fabrication process consisting of low-temperature precuring followed by rapid photonic sintering (LTRS). A special Ag nanoparticle shell on a Cu core structure is first created in situ by low-temperature precuring. An instantaneous photonic sintering can induce rapid mutual dissolution between the Cu core and the Ag nanoparticle shell so that core-shell structures consisting of a Cu-rich phase in the core and a Ag-rich phase in the shell (Cu-Ag alloy) can be obtained on flexible substrates. The resulting Cu-Ag alloy electrode has high conductivity (3.4 µΩ·cm) and ultrahigh oxidation resistance even up to 180 °C in an air atmosphere; this approach shows huge potential and is a tempting prospect for the fabrication of highly reliable and cost-effective printed electronic devices.

18.
J Phys Chem B ; 110(5): 2087-92, 2006 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-16471788

RESUMEN

Highly crystalline TiO2 nanorods with lengths of 100-300 nm and diameters of 20-30 nm have been synthesized by a hydrothermal process in a cetyltrimethylammonium bromide surfactant solution. The microstructure measured by X-ray diffraction and high-resolution transmission electron microscopy was a pure highly crystalline anatase phase with a long nanorod shape. The addition of a triblock copolymer poly(ethylene oxide)100-poly(propylene oxide) 65-poly(ethylene oxide)100 (F127) decreased the length of the nanorods and kept the rod shape of the particles even after sintering at high temperatures. The rod shape kept under high calcination temperatures contributed to the achievement of the high conversion efficiency of light-to-electricity as discussed in the paper. A high conversion efficiency of light-to-electricity of 7.29% was obtained with the TiO2 single-crystalline anatase nanorod cell.

19.
J Phys Chem B ; 110(28): 13872-80, 2006 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-16836336

RESUMEN

The same equation was derived from two different impedance models based on the quite different physical descriptions proposed by Kern et al.(1) and by Bisquert.(2,3) Reliable values of the parameters relating to electron transport in dye-sensitized solar cells can be determined from measured spectra by electrochemical impedance spectroscopy when careful analysis of the measured spectra is done based on the classification and clarification of the same impedance equation consequent from the two models. The requisites for making highly efficient dye-sensitized solar cells were proposed.

20.
ACS Appl Mater Interfaces ; 8(9): 6190-9, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26830466

RESUMEN

Copper nanowire (CuNW) conductors have been considered to have a promising perspective in the area of stretchable electronics due to the low price and high conductivity. However, the fabrication of CuNW conductors suffers from harsh conditions, such as high temperature, reducing atmosphere, and time-consuming transfer step. Here, a simple and rapid one-step photonic sintering technique was developed to fabricate stretchable CuNW conductors on polyurethane (PU) at room temperature in air environment. It was observed that CuNWs were instantaneously deoxidized, welded and simultaneously embedded into the soft surface of PU through the one-step photonic sintering technique, after which highly conductive network and strong adhesion between CuNWs and PU substrates were achieved. The CuNW/PU conductor with sheet resistance of 22.1 Ohm/sq and transmittance of 78% was achieved by the one-step photonic sintering technique within only 20 µs in air. Besides, the CuNW/PU conductor could remain a low sheet resistance even after 1000 cycles of stretching/releasing under 10% strain. Two flexible electronic devices, wearable sensor and glove-shaped heater, were fabricated using the stretchable CuNW/PU conductor, demonstrating that our CuNW/PU conductor could be integrated into various wearable electronic devices for applications in food, clothes, and medical supplies fields.


Asunto(s)
Cobre/química , Electrónica , Nanocables/química , Dimetilpolisiloxanos/química , Electrodos , Diseño de Equipo , Microscopía Electrónica de Rastreo , Nanocables/ultraestructura , Fotones , Poliuretanos/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA